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Preface to the Second Edition

In this new edition, I have added some material which is particu-
larly useful in applications, namely the new Section 9.3 on options and
their values and the new Chapter 11 on stochastic delay population
systems. In addition, more material has been added to Section 9.2 to
include several popular stochastic models in finance, while the con-
cept of the maximal local solution to a stochastic functional differential
equation has been added to Section 5.2 which forms a fundamental
theory for our new Chapter 11.

During this work, I have benefitted from valuable comments and
help from several people, including K.D. Elworthy, G. Gettinby, W.
Gurney, D.J. Higham, N. Jacob, P. Kloeden, J. Lam, X. Liao, E.
Renshaw, A.M. Stuart, A. Truman, G.G. Yin. I am grateful to them
all for their help.

I would like to thank the EPSRC/BBSRC, the Royal Society, the
London Mathematics Society as well as the Edinburgh Mathematical
Society for their financial support. Moreover, I should thank my
family, in particular, Weihong, for their constant support.

Xuerong Mao
Glasgow June 2007
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Preface from the 1997 Edition

Stochastic modelling has come to play an important role in many
branches of science and industry where more and more people have
encountered stochastic differential equations. There are several excel-
lent books on stochastic differential equations but they are long and
difficult, especially for the beginner. There are also a number of books
at the introductory level but they do not deal with several important
types of stochastic differential equations, e.g. stochastic equations of
the neutral type and backward stochastic differential equations which
have been developed recently. There is a need for a book that not
only studies the classical theory of stochastic differential equations,
but also the new developments at an introductory level. It is in this
spirit that this text is written.

This text will explore stochastic differential equations and their
applications. Some important features of this text are as follows:

• This text presents at an introductory level the basic principles of
various types of stochastic systems, e.g. stochastic differential
equations, stochastic functional differential equations, stochas-
tic equations of neutral type and backward stochastic differential
equations. The neutral-type and backward equations appear fre-
quently in many branches of science and industry. Although they
are more complicated, this text treats them at an understandable
level.

• This text discusses the new developments of Carathedory’s and
Cauchy–Marayama’s approximation schemes in addition to Pi-
card’s. The advantage of Cauchy–Marayama’s and Carathedory’s
schemes is that the approximate solutions converge to the accu-
rate solution under a weaker condition than the Lipschitz one,
but the corresponding convergence problem is still open for Pi-
card’s scheme. These schemes are used to establish the theory of
existence and uniqueness of the solution while they also give the

ix



x Preface

procedures to obtain numerical solutions in applications.

• This text demonstrates the manifestations of the general Lya-
punov method by showing how this effective technique can be
adopted to study entirely differently qualitative and quantitative
properties of stochastic systems, e.g. asymptotic bounds and ex-
ponential stability.

• This text emphasises the analysis of stability in stochastic mod-
elling and illustrates the practical use of stochastic stabilization
and destabilization. This is the first text that explains system-
atically the use of the Razumikhin technique in the study of ex-
ponential stability for stochastic functional differential equations
and the neutral-type equations.

• This text illustrates the practical use of stochastic differential
equations through the study of stochastic oscillators, stochastic mod-
elling in finance and stochastic neural networks.
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General Notation

Theorem 4.3.2, for example, means Theorem 3.2 (the second theorem in
Section 3) in Chapter 4. If this theorem is quoted in Chapter 4, it is written as
Theorem 3.2 only.

positive : > 0.
nonpositive : ≤ 0.

negative : < 0.
nonnegative : ≥ 0.

a.s. : almost surely, or P -almost surely, or with probability 1.
A := B : A is defined by B or A is denoted by B.

A(x) ≡ B(x) : A(x) and B(x) are identically equal, i.e. A(x) = B(x) for
all x.

∅ : the empty set.
IA : the indicator function of a set A, i.e. IA(x) = 1 if x ∈ A or

otherwise 0.
Ac : the complement of A in Ω, i.e. Ac = Ω−A.

A ⊂ B : A ∩Bc = ∅.
A ⊂ B a.s. : P (A ∩Bc) = 0.

σ(C) : the σ-algebra generated by C.
a ∨ b : the maximum of a and b.
a ∧ b : the minimum of a and b.

f : A → B : the mapping f from A to B.
R = R1 : the real line.

R+ : the set of all nonnegative real numbers, i.e. R+ = [0,∞).
Rd : the d-dimensional Euclidean space.
Rd

+ : = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d}, i.e. the positive cone.
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xvi General Notation

Bd : the Borel-σ-algebra on Rd.
B : = B1.

Rd×m : the space of real d×m-matrices.
Bd×m : the Borel-σ-algebra on Rd×m.

Cd : the d-dimensional complex space.
Cd×m : the space of complex d×m-matrices.

|x| : the Euclidean norm of a vector x.
Sh : = {x ∈ Rd : |x| ≤ h}.
AT : the transpose of a vector or matrix A.

(x, y) : the scale product of vectors x and y, i.e. (x, y) = xT y.
trace A : the trace of a square matrix A = (aij)d×d, i.e. trace A =∑

1≤i≤d aii.
λmin(A) : the smallest eigenvalue of a matrix A.
λmax(A) : the largest eigenvalue of a matrix A.
λ+

max(A) : = supx∈Rd
+,|x|=1 xT Ax.

|A| : =
√

trace(AT A), i.e. the trace norm of a matrix A.

||A|| : = sup{|Ax| : |x| = 1} =
√

λmax(AT A), i.e. the operator
norm of a matrix A.

δij : Dirac’s delta function, that is δij = 1 if i = j or otherwise 0.
C(D;Rd) : the family of continuous Rd-valued functions defined on D.

Cm(D;Rd) : the family of continuously m-times differentiable Rd-valued
functions defined on D.

Cm
0 (D;Rd) : the family of functions in Cm(D;Rd) with compact support

in D.
C2,1(D ×R+;R) : the family of all real-valued functions V (x, t) defined on D×

R+ which are continuously twice differentiable in x ∈ D and
once differentiable in t ∈ R+.

∇ : = ( ∂
∂x1

, · · · , ∂
∂xd

).

∆ : the Laplace operator, i.e. ∆ =
∑d

i=1
∂2

∂x2
i

,

Vx : = ∇V = (Vx1 , · · · , Vxd
) = ( ∂V

∂x1
, · · · , ∂V

∂xd
).

Vxx : = (Vxixj
)d×d = ( ∂2V

∂xi∂xj
)d×d.

||ξ||Lp : = (E|ξ|p)1/p.
Lp(Ω; Rd) : the family of Rd-valued random variables ξ with E|ξ|p < ∞.

Lp
Ft

(Ω; Rd) : the family of Rd-valued Ft-measurable random variables ξ
with E|ξ|p < ∞.

C([−τ, 0];Rd) : the space of all continuous Rd-valued functions ϕ defined on
[−τ, 0] with a norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|.



General Notation xvii

Lp
F ([−τ, 0];Rd) : the family of all C([−τ, 0];Rd)-valued random variables φ

such that E||φ||p < ∞.
Lp
Ft

([−τ, 0];Rd) : the family of all Ft-measurable C([−τ, 0];Rd)-valued ran-
dom variables φ such that E||φ||p < ∞.

Cb
Ft

([−τ, 0];Rd) : the family of Ft-measurable bounded C([−τ, 0];Rd)-valued
random variables.

Lp([a, b];Rd) : the family of Borel measurable functions h : [a, b] → Rd such
that

∫ b

a
|h(t)|pdt < ∞.

Lp([a, b];Rd) : the family of Rd-valued Ft-adapted processes {f(t)}a≤t≤b

such that
∫ b

a
|f(t)|pdt < ∞ a.s.

Mp([a, b];Rd) : the family of processes {f(t)}a≤t≤b in Lp([a, b];Rd) such that
E

∫ b

a
|f(t)|pdt < ∞.

Lp(R+;Rd) : the family of processes {f(t)}t≥0 such that for every T > 0,
{f(t)}0≤t≤T ∈ Lp([0, T ];Rd).

Mp(R+;Rd) : the family of processes {f(t)}t≥0 such that for every T > 0,
{f(t)}0≤t≤T ∈Mp([0, T ];Rd).

Erf(·) : the error function given by Erf(z) = (2π)−1/2
∫ z

0
e−u2/2du.

sign(x) : the sign function, that is sign(x) = +1 if x ≥ 0 or otherwise
−1.

Other notations will be explained where they first appear.
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1

Brownian Motions

and Stochastic Integrals

1.1 INTRODUCTION

Systems in many branches of science and industry are often perturbed by vari-
ous types of environmental noise. For example, consider the simple population
growth model

dN(t)
dt

= a(t)N(t) (1.1)

with initial value N(0) = N0, where N(t) is the size of the population at time
t and a(t) is the relative rate of growth. It might happen that a(t) is not
completely known, but subject to some random environmental effects. In other
words,

a(t) = r(t) + σ(t)“noise”,

so equation (1.1) becomes

dN(t)
dt

= r(t)N(t) + σ(t)N(t)“noise”.

That is, in the form of integration,

N(t) = N0 +
∫ t

0

r(s)N(s)ds +
∫ t

0

σ(s)N(s)“noise”ds. (1.2)

The questions are: What is the mathematical interpretation for the “noise” term
and what is the integration

∫ t

0
σ(s)N(s)“noise”ds?

1



2 Brownian Motions and Stochastic Integrals [Ch.1

It turns out that a reasonable mathematical interpretation for the “noise”
term is the so-called white noise Ḃ(t), which is formally regarded as the derivative
of a Brownian motion B(t), i.e. Ḃ(t) = dB(t)/dt. So the term “noise”dt can be
expressed as Ḃ(t)dt = dB(t), and∫ t

0

σ(s)N(s)“noise”ds =
∫ t

0

σ(s)N(s)dB(s). (1.3)

If the Brownian motion B(t) were differentiable, then the integral would have
no problem at all. Unfortunately, we shall see that the Brownian motion B(t) is
nowhere differentiable hence the integral can not be defined in the ordinary way.
On the other hand, if σ(t)N(t) is a process of finite variation, one may define
the integral by∫ t

0

σ(s)N(s)dB(s) = σ(t)N(t)B(t)−
∫ t

0

B(s)d[σ(s)N(s)].

However, if σ(t)N(t) is only continuous, or just integrable, this definition does
not make sense. To define the integral, we need make use of the stochastic
nature of Brownian motion. This integral was first defined by K. Itô in 1949 and
is now known as the Itô stochastic integral. The main aims of this chapter are to
introduce the stochastic nature of Brownian motion and to define the stochastic
integral with respect to Brownian motion.

To make this book self-contained, we shall briefly review the basic notations
of probability theory and stochastic processes. We then give the mathematical
definition of Brownian motions and introduce their important properties. Mak-
ing use of these properties, we proceed to define the stochastic integral with
respect to Brownian motion and establish the well-known Itô formula. As the
applications of Itô’s formula, we establish several moment inequalities e.g. the
Burkholder–Davis–Gundy inequality for the stochastic integral, as well as the
exponential martingale inequality. We shall finally show a number of well-known
integral inequalities of the Gronwall type.

1.2 BASIC NOTATIONS OF PROBABILITY THEORY

Probability theory deals with mathematical models of trials whose out-
comes depend on chance. All the possible outcomes—the elementary events—
are grouped together to form a set, Ω, with typical element, ω ∈ Ω. Not every
subset of Ω is in general an observable or interesting event. So we only group
these observable or interesting events together as a family, F , of subsets of Ω.
For the purpose of probability theory, such a family, F , should have the following
properties:

(i) ∅ ∈ F , where ∅ denotes the empty set;
(ii) A ∈ F ⇒ AC ∈ F , where AC = Ω−A is the complement of A in Ω;
(iii) {Ai}i≥1 ⊂ F ⇒

⋃∞
i=1 Ai ∈ F .
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A family F with these three properties is called a σ-algebra. The pair (Ω,F)
is called a measurable space, and the elements of F is henceforth called F-
measurable sets instead of events. If C is a family of subsets of Ω, then there
exists a smallest σ-algebra σ(C) on Ω which contains C. This σ(C) is called the
σ-algebra generated by C. If Ω = Rd and C is the family of all open sets in Rd,
then Bd = σ(C) is called the Borel σ-algebra and the elements of Bd are called
the Borel sets.

A real-valued function X : Ω → R is said to be F-measurable if

{ω : X(ω) ≤ a} ∈ F for all a ∈ R.

The function X is also called a real-valued (F-measurable) random variable. An
Rd-valued function X(ω) = (X1(ω), · · · , Xd(ω))T is said to be F-measurable if
all the elements Xi are F-measurable. Similarly, a d×m-matrix-valued function
X(ω) = (Xij(ω))d×m is said to be F-measurable if all the elements Xij are
F-measurable. The indicator function IA of a set A ⊂ Ω is defined by

IA(ω) =
{ 1 for ω ∈ A,

0 for ω /∈ A.

The indicator function IA is F-measurable if and only if A is an F-measurable
set, i.e. A ∈ F . If the measurable space is (Rd,Bd), a Bd-measurable function is
then called a Borel measurable function. More generally, let (Ω′,F ′) be another
measurable space. A mapping X : Ω → Ω′ is said to be (F ,F ′)-measurable if

{ω : X(ω) ∈ A′} ∈ F for all A′ ∈ F ′.

The mapping X is then called an Ω′-valued (F ,F ′)-measurable (or simply, F-
measurable) random variable.

Let X : Ω → Rd be any function. The σ-algebra σ(X) generated by X is
the smallest σ-algebra on Ω containing all the sets {ω : X(w) ∈ U}, U ⊂ Rd

open. That is

σ(X) = σ({ω : X(w) ∈ U} : U ⊂ Rd open).

Clearly, X will then be σ(X)-measurable and σ(X) is the smallest σ-algebra
with this property. If X is F-measurable, then σ(X) ⊂ F , i.e. X generates a
sub-σ-algebra of F . If {Xi : i ∈ I} is a collection of Rd-valued functions, define

σ(Xi : i ∈ I) = σ
(⋃

i∈I

σ(Xi)
)

which is called the σ-algebra generated by {Xi : i ∈ I}. It is the smallest σ-
algebra with respect to which every Xi is measurable. The following result is
useful. It is a special case of a result sometimes called the Doob–Dynkin lemma.
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Lemma 2.1 If X, Y : Ω → Rd are two given functions, then Y is σ(X)-
measurable if and only if there exists a Borel measurable function g : Rd → Rd

such that Y = g(X).

A probability measure P on a measurable space (Ω,F) is a function P :
F → [0, 1] such that

(i) P (Ω) = 1;
(ii) for any disjoint sequence {Ai}i≥1 ⊂ F (i.e. Ai ∩Aj = ∅ if i 6= j)

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

The triple (Ω,F , P ) is called a probability space. If (Ω,F , P ) is a probability
space, we set

F̄ = {A ⊂ Ω : ∃ B,C ∈ F such that B ⊂ A ⊂ C, P (B) = P (C)}.

Then F̄ is a σ-algebra and is called the completion of F . If F = F̄ , the prob-
ability space (Ω,F , P ) is said to be complete. If not, one can easily extend P
to F̄ by defining P (A) = P (B) = P (C) for A ∈ F̄ , where B,C ∈ F with the
properties that B ⊂ A ⊂ C and P (B) = P (C). Now (Ω, F̄ , P ) is a complete
probability space, called the completion of (Ω,F , P ).

In the sequel of this section, we let (Ω,F , P ) be a probability space. If X is
a real-valued random variable and is integrable with respect to the probability
measure P , then the number

EX =
∫

Ω

X(ω)dP (ω)

is called the expectation of X (with respect to P ). The number

V (X) = E(X − EX)2

is called the variance of X (here and in the sequel of this section we assume
that all integrals concerned exist). The number E|X|p (p > 0) is called the pth
moment of X. If Y is another real-valued random variable,

Cov(X, Y ) = E[(X − EX)(Y − EY )]

is called the covariance of X and Y . If Cov(X, Y ) = 0, X and Y are said
to be uncorrelated. For an Rd-valued random variable X = (X1, · · · , Xd)T ,
define EX = (EX1, · · · , EXd)T . For a d × m-matrix-valued random variable
X = (Xij)d×m, define EX = (EXij)d×m. If X and Y are both Rd-valued
random variables, the symmetric nonnegative definite d× d matrix

Cov(X, Y ) = E[(X − EX)(Y − EY )T ]
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is called their covariance matrix .
Let X be an Rd-valued random variable. Then X induces a probability

measure µX on the Borel measurable space (Rd,Bd), defined by

µX(B) = P{ω : X(ω) ∈ B} for B ∈ Bd,

and µX is called the distribution of X. The expectation of X can now be
expressed as

EX =
∫

Rd

xdµX(x).

More generally, if g : Rd → Rm is Borel measurable, we then have the following
transformation formula

Eg(X) =
∫

Rd

g(x)dµX(x).

For p ∈ (0,∞), let Lp = Lp(Ω; Rd) be the family of Rd-valued random
variables X with E|X|p < ∞. In L1, we have |EX| ≤ E|X|. Moreover, the
following three inequalities are very useful:
(i) Hölder’s inequality

|E(XT Y )| ≤ (E|X|p)1/p (E|Y |q)1/q

if p > 1, 1/p + 1/q = 1, X ∈ Lp, Y ∈ Lq;
(ii) Minkovski’s inequality

(E|X + Y |p)1/p ≤ (E|X|p)1/p + (E|Y |p)1/p

if p > 1, X, Y ∈ Lp;
(iii) Chebyshev’s inequality

P{ω : |X(ω)| ≥ c} ≤ c−pE|X|p

if c > 0, p > 0, X ∈ Lp.
A simple application of Hölder’s inequality implies

(E|X|r)1/r ≤ (E|X|p)1/p

if 0 < r < p < ∞, X ∈ Lp.
Let X and Xk, k ≥ 1, be Rd-valued random variables. The following four

convergence concepts are very important:
(a) If there exists a P -null set Ω0 ∈ F such that for every ω /∈ Ω0, the se-

quence {Xk(ω)} converges to X(ω) in the usual sense in Rd, then {Xk}
is said to converge to X almost surely or with probability 1, and we write
limk→∞ Xk = X a.s.
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(b) If for every ε > 0, P{ω : |Xk(ω) −X(ω)| > ε} → 0 as k → ∞, then {Xk}
is said to converge to X stochastically or in probability.

(c) If Xk and X belong to Lp and E|Xk − X|p → 0, then {Xk} is said to
converge to X in pth moment or in Lp.

(d) If for every real-valued continuous bounded function g defined on Rd,
limk→∞ Eg(Xk) = Eg(X), then {Xk} is said to converge to X in dis-
tribution.

These convergence concepts have the following relationship:

convergence in Lp

⇓
a.s. convergence ⇒ convergence in probability

⇓
convergence in distribution

Furthermore, a sequence converges in probability if and only if every subsequence
of it contains an almost surely convergent subsequence. A sufficient condition
for limk→∞ Xk = X a.s. is the condition

∞∑
k=1

E|Xk −X|p < ∞ for some p > 0.

We now state two very important integration convergence theorems.

Theorem 2.2 (Monotonic convergence theorem) If {Xk} is an increasing
sequence of nonnegative random variables, then

lim
k→∞

EXk = E
(

lim
k→∞

Xk

)
.

Theorem 2.3 (Dominated convergence theorem) Let p ≥ 1, {Xk} ⊂
Lp(Ω; Rd) and Y ∈ Lp(Ω; R). Assume that |Xk| ≤ Y a.s. and {Xk} converges
to X in probability. Then X ∈ Lp(Ω; Rd), {Xk} converges to X in Lp, and

lim
k→∞

EXk = EX.

When Y is bounded, this theorem is also referred as the bounded convergence
theorem.

Two sets A,B ∈ F are said to be independent if P (A ∩ B) = P (A)P (B).
Three sets A,B, C ∈ F are said to be independent if

P (A ∩B) = P (A)P (B), P (A ∩ C) = P (A)P (C),
P (B ∩ C) = P (B)P (C) and P (A ∩B ∩ C) = P (A)P (B)P (C).
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Let I be an index set. A collection of sets {Ai : i ∈ I} ⊂ F is said to be
independent if

P (Ai1 ∩ · · · ∩Aik
) = P (Ai1) · · ·P (Aik

)

for all possible choices of indices i1, · · · , ik ∈ I. Two sub-σ-algebras F1 and F2

of F are said to be independent if

P (A1 ∩A2) = P (A1)P (A2) for all A1 ∈ F1, A2 ∈ F2.

A collection of sub-σ-algebras {Fi : i ∈ I} is said to be independent if for every
possible choice of indices i1, · · · , ik ∈ I,

P (Ai1 ∩ · · · ∩Aik
) = P (Ai1) · · ·P (Aik

)

holds for all Ai1 ∈ Fi1 , · · · , Aik
∈ Fik

. A family of random variables {Xi : i ∈ I}
(whose ranges may differ for different values of the index) is said to be inde-
pendent if the σ-algebras σ(Xi), i ∈ I generated by them are independent. For
example, two random variables X : Ω → Rd and Y : Ω → Rm are independent
if and only if

P{ω : X(ω) ∈ A, Y (ω) ∈ B} = P{ω : X(ω) ∈ A} P{ω : Y (ω) ∈ B}

holds for all A ∈ Bd, B ∈ Bm. If X and Y are two independent real-valued
integrable random variables, then XY is also integrable and

E(XY ) = EX EY.

If X, Y ∈ L2(Ω; R) are uncorrelated, then

V (X + Y ) = V (X) + V (Y ).

If the X and Y are independent, they are uncorrelated. If (X, Y ) has a normal
distribution, then X and Y are independent if and only if they are uncorrelated.

Let {Ak} be a sequence of sets in F . Define the upper limit of the sets by

lim sup
k→∞

Ak = {ω : ω ∈ Ak for infinitely many k} =
∞⋂

i=1

∞⋃
k=i

Ak.

Clearly, it belongs to F . With regard to its probability, we have the following
well-known Borel–Cantelli lemma.

Lemma 2.4 (Borel–Cantelli’s lemma)

(1) If {Ak} ⊂ F and
∑∞

k=1 P (Ak) < ∞, then

P
(
lim sup

k→∞
Ak

)
= 0.
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That is, there exists a set Ωo ∈ F with P (Ωo) = 1 and an integer-valued random
variable ko such that for every ω ∈ Ωo we have ω /∈ Ak whenever k ≥ ko(ω).

(2) If the sequence {Ak} ⊂ F is independent and
∑∞

k=1 P (Ak) = ∞, then

P
(
lim sup

k→∞
Ak

)
= 1.

That is, there exists a set Ωθ ∈ F with P (Ωθ) = 1 such that for every ω ∈ Ωθ,
there exists a sub-sequence {Aki} such that the ω belongs to every Aki .

Let A,B ∈ F with P (B) > 0. The conditional probability of A under
condition B is

P (A|B) =
P (A ∩B)

P (B)
.

However, we frequently encounter a family of conditions so we need the more
general concept of conditional expectation. Let X ∈ L1(Ω; R). Let G ⊂ F is
a sub-σ-algebra of F so (Ω,G) is a measurable space. In general, X is not G-
measurable. We now seek an integrable G-measurable random variable Y such
that it has the same values as X on the average in the sense that

E(IGY ) = E(IGX) i.e.
∫

G

Y (ω)dP (ω) =
∫

G

X(ω)dP (ω) for all G ∈ G.

By the Radon–Nikodym theorem, there exists one such Y , almost surely unique.
It is called the conditional expectation of X under the condition G, and we write

Y = E(X|G).

If G is the the σ-algebra generated by a random variable Y , we write

E(X|G) = E(X|Y ).

As an example, consider a collection of sets {Ak} ⊂ F with⋃
k

Ak = Ω, P (Ak) > 0, Ak ∩Ai = ∅ if k 6= j.

Let G = σ({Ak}), i.e. G is generated by {Ak}. Then E(X|G) is a step function
on Ω given by

E(X|G) =
∑

k

IAk
E(IAk

X)
P (Ak)

.

In other words, if ω ∈ Ak,

E(X|G)(ω) =
E(IAk

X)
P (Ak)

.
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It follows from the definition that

E(E(X|G)) = E(X)

and
|E(X|G)| ≤ E(|X| |G) a.s.

Other important properties of the conditional expectation are as follows (all the
equalities and inequalities shown hold almost surely):

(a) G = {∅,Ω} ⇒ E(X|G) = EX;
(b) X ≥ 0 ⇒ E(X|G) ≥ 0;
(c) X is G-measurable ⇒ E(X|G) = X;
(d) X = c = const. ⇒ E(X|G) = c;
(e) a, b ∈ R ⇒ E(aX + bY |G) = aE(X|G) + bE(Y |G);
(f) X ≤ Y ⇒ E(X|G) ≤ E(Y |G);
(g) X is G-measurable ⇒ E(XY |G) = XE(Y |G),

in particular, E(E(X|G) Y |G) = E(X|G) E(Y |G);
(h) σ(X),G are independent ⇒ E(X|G) = EX,

in particular, X, Y are independent ⇒ E(X|Y ) = EX;
(i) G1 ⊂ G2 ⊂ F ⇒ E(E(X|G2)|G1) = E(X|G1).

Finally, if X = (X1, · · · , Xd)T ∈ L1(Ω; Rd), its conditional expectation un-
der G is defined as

E(X|G) = (E(X1|G), · · · , E(Xd|G))T .

1.3 STOCHASTIC PROCESSES

Let (Ω,F , P ) be a probability space. A filtration is a family {Ft}t≥0 of
increasing sub-σ-algebras of F (i.e. Ft ⊂ Fs ⊂ F for all 0 ≤ t < s < ∞). The
filtration is said to be right continuous if Ft =

⋂
s>t Fs for all t ≥ 0. When the

probability space is complete, the filtration is said to satisfy the usual conditions
if it is right continuous and F0 contains all P -null sets.

From now on, unless otherwise specified, we shall always work on a given
complete probability space (Ω,F , P ) with a filtration {Ft}t≥0 satisfying the usual
conditions. We also define F∞ = σ(

⋃
t≥0 Ft), i.e. the σ-algebra generated by⋃

t≥0 Ft.

A family {Xt}t∈I of Rd-valued random variables is called a stochastic pro-
cess with parameter set (or index set) I and state space Rd. The parameter set
I is usually (as in this book) the halfline R+ = [0,∞), but it may also be an
interval [a, b], the nonnegative integers or even subsets of Rd. Note that for each
fixed t ∈ I we have a random variable

Ω 3 ω → Xt(ω) ∈ Rd.
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On the other hand, for each fixed ω ∈ Ω we have a function

I 3 t → Xt(ω) ∈ Rd

which is called a sample path of the process, and we shall write X.(ω) for the
path. Sometimes it is convenient to write X(t, ω) instead of Xt(ω), and the
stochastic process may be regarded as a function of two variables (t, ω) from
I × Ω to Rd. Similarly, one can define matrix-valued stochastic processes etc.
We often write a stochastic process {Xt}t≥0 as {Xt}, Xt or X(t).

Let {Xt}t≥0 be an Rd-valued stochastic process. It is said to be continuous
(resp. right continuous, left continuous) if for almost all ω ∈ Ω function Xt(ω)
is continuous (resp. right continuous, left continuous) on t ≥ 0. It is said to be
cadlag (right continuous and left limit) if it is right continuous and for almost all
ω ∈ Ω the left limit lims↑t Xs(ω) exists and is finite for all t > 0. It is said to be
integrable if for every t ≥ 0, Xt is an integrable random variable. It is said to be
{Ft}-adapted (or simply, adapted) if for every t, Xt is Ft-measurable. It is said
to be measurable if the stochastic process regarded as a function of two variables
(t, ω) from R+ ×Ω to Rd is B(R+)×F-measurable, where B(R+) is the family
of all Borel sub-sets of R+. The stochastic process is said to be progressively
measurable or progressive if for every T ≥ 0, {Xt}0≤t≤T regarded as a function
of (t, ω) from [0, T ]×Ω to Rd is B([0, T ])×FT -measurable, where B([0, T ]) is
the family of all Borel sub-sets of [0, T ]. Let O (resp. P) denote the smallest σ-
algebra on R+×Ω with respect to which every cadlag adapted process (resp. left
continuous process) is a measurable function of (t, ω). A stochastic process is said
to be optional (resp. predictable) if the process regarded as a function of (t, ω) is
O-measurable (resp. P-measurable). A real-valued stochastic process {At}t≥0

is called an increasing process if for almost all ω ∈ Ω, At(ω) is nonnegative
nondecreasing right continuous on t ≥ 0. It is called a process of finite variation
if At = Āt − Ât with {Āt} and {Ât} both increasing processes. It is obvious
that the processes of finite variation are cadlag. Hence the adapted processes of
finite variation are optional.

The relations among the various stochastic processes are summarised below:

continuous adapted continuous adapted adapted increasing
⇓ ⇓ ⇓

left continuous adapted cadlag adapted ⇐ adapted finite variation
⇓ ⇓

predictable ⇒ optional
⇓

progressive ⇒ adapted
⇓

measurable

Let {Xt}t≥0 be a stochastic process. Another stochastic process {Yt}t≥0

is called a version or modification of {Xt} if for all t ≥ 0, Xt = Yt a.s. (i.e.
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P{ω : Xt(ω) = Yt(ω)} = 1). Two stochastic processes {Xt}t≥0 and {Yt}t≥0 are
said to be indistinguishable if for almost all ω ∈ Ω, Xt(ω) = Yt(ω) for all t ≥ 0
(i.e. P{ω : Xt(ω) = Yt(ω) for all t ≥ 0} = 1).

A random variable τ : Ω → [0,∞] (it may take the value ∞) is called an
{Ft}-stopping time (or simply, stopping time) if {ω : τ(ω) ≤ t} ∈ Ft for any
t ≥ 0. Let τ and ρ be two stopping times with τ ≤ ρ a.s. We define

[[τ, ρ[[= {(t, ω) ∈ R+ × Ω : τ(ω) ≤ t < ρ(ω)}

and call it a stochastic interval . Similarly, we can define stochastic intervals
[[τ, ρ]], ]]τ, ρ]] and ]]τ, ρ[[. If τ is a stopping time, define

Fτ = {A ∈ F : A ∩ {ω : τ(ω) ≤ t} ∈ Ft for all t ≥ 0}

which is a sub-σ-algebra of F . If τ and ρ are two stopping times with τ ≤ ρ a.s.,
then Fτ ⊂ Fρ. The following two theorems are useful.

Theorem 3.1 If {Xt}t≥0 is a progressively measurable process and τ is a
stopping time, then XτI{τ<∞} is Fτ -measurable. In particular, if τ is finite,
then Xτ is Fτ -measurable.

Theorem 3.2 Let {Xt}t≥0 be an Rd-valued cadlag {Ft}-adapted process, and
D an open subset of Rd. Define

τ = inf{t ≥ 0 : Xt /∈ D},

where we use the convention inf ∅ = ∞. Then τ is an {Ft}-stopping time, and
is called the first exit time from D. Moreover, if ρ is a stopping time, then

θ = inf{t ≥ ρ : Xt /∈ D}

is also an {Ft}-stopping time, and is called the first exit time from D after ρ.

An Rd-valued {Ft}-adapted integrable process {Mt}t≥0 is called a martin-
gale with respect to {Ft} (or simply, martingale) if

E(Mt|Fs) = Ms a.s. for all 0 ≤ s < t < ∞.

It should be pointed out that every martingale has a cadlag modification since
we always assume that the filtration {Ft} is right continuous. Therefore we can
always assume that any martingale is cadlag in the sequel. If X = {Xt}t≥0

is a progressively measurable process and τ is a stopping time, then Xτ =
{Xτ∧t}t≥0 is called a stopped process of X. The following is the well-known
Doob martingale stopping theorem.

Theorem 3.3 Let {Mt}t≥0 be an Rd-valued martingale with respect to {Ft},
and let θ, ρ be two finite stopping times. Then

E(Mθ|Fρ) = Mθ∧ρ a.s.
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In particular, if τ is a stopping time, then

E(Mτ∧t|Fs) = Mτ∧s a.s.

holds for all 0 ≤ s < t < ∞. That is, the stopped process Mτ = {Mτ∧t} is still
a martingale with respect to the same filtration {Ft}.

A stochastic process X = {Xt}t≥0 is called square-integrable if E|Xt|2 < ∞
for every t ≥ 0. If M = {Mt}t≥0 is a real-valued square-integrable continuous
martingale, then there exists a unique continuous integrable adapted increas-
ing process denoted by {〈M,M〉t} such that {M2

t − 〈M,M〉t} is a continuous
martingale vanishing at t = 0. The process {〈M,M〉t} is called the quadratic
variation of M . In particular, for any finite stopping time τ ,

EM2
τ = E〈M,M〉τ .

If N = {Nt}t≥0 is another real-valued square-integrable continuous martingale,
we define

〈M,N〉t =
1
2

(
〈M + N,M + N〉t − 〈M,M〉t − 〈N,N〉t

)
,

and call {〈M,N〉t} the joint quadratic variation of M and N . It is useful to
know that {〈M,N〉t} is the unique continuous integrable adapted process of
finite variation such that {MtNt−〈M,N〉t} is a continuous martingale vanishing
at t = 0. In particular, for any finite stopping time τ ,

EMτNτ = E〈M,N〉τ .

A right continuous adapted process M = {Mt}t≥0 is called a local mar-
tingale if there exists a nondecreasing sequence {τk}k≥1 of stopping times with
τk ↑ ∞ a.s. such that every {Mτk∧t − M0}t≥0 is a martingale. Every mar-
tingale is a local martingale (by Theorem 3.3), but the converse is not true.
If M = {Mt}t≥0 and N = {Nt}t≥0 are two real-valued continuous local mar-
tingales, their joint quadratic variation {〈M,N〉}t≥0 is the unique continuous
adapted process of finite variation such that {MtNt − 〈M,N〉t}t≥0 is a contin-
uous local martingale vanishing at t = 0. When M = N , {〈M,M〉}t≥0 is called
the quadratic variation of M . The following result is the useful strong law of
large numbers.

Theorem 3.4 (Strong law of large numbers) Let M = {Mt}t≥0 be a
real-valued continuous local martingale vanishing at t = 0. Then

lim
t→∞

〈M,M〉t = ∞ a.s. ⇒ lim
t→∞

Mt

〈M,M〉t
= 0 a.s.

and also

lim sup
t→∞

〈M,M〉t
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.
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More generally, if A = {At}t≥0 is a continuous adapted increasing process such
that

lim
t→∞

At = ∞ and
∫ ∞

0

d〈M,M〉t
(1 + At)2

< ∞ a.s.

then
lim

t→∞

Mt

At
= 0 a.s.

A real-valued {Ft}-adapted integrable process {Mt}t≥0 is called a super-
martingale (with respect to {Ft}) if

E(Mt|Fs) ≤ Ms a.s. for all 0 ≤ s < t < ∞.

It is called a submartingale (with respect to {Ft}) if we replace the sign ≤ in
the last formula with ≥. Clearly, {Mt} is submartingale if and only if {−Mt}
is supermartingale. For a real-valued martingale {Mt}, {M+

t := max(Mt, 0)}
and {M−

t := max(0,−Mt)} are submartingales. For a supermartingale (resp.
submartingale), EMt is monotonically decreasing (resp. increasing). Moreover,
if p ≥ 1 and {Mt} is an Rd-valued martingale such that Mt ∈ Lp(Ω; Rd), then
{|Mt|p} is a nonnegative submartingale. Moreover, Doob’s stopping theorem 3.3
holds for supermartingales and submartingales as well.

Theorem 3.5 (Doob’s martingale convergence theorem)

(i) Let {Mt}t≥0 be a real-valued right-continuous supermartingale. If

sup
0≤t<∞

EM−
t < ∞,

then Mt converges almost surely to a random variable M∞ ∈ L1(Ω; R). In
particular, this holds if Mt is nonnegative.

(ii) Let {Mt}t≥0 be a real-valued right-continuous supermartingale. Then
{Mt}t≥0 is uniformly integrable, i.e.

lim
c→∞

[
sup
t≥0

E
(
I{|Mt|≥c}|Mt|

) ]
= 0

if and only if there exists a random variable M∞ ∈ L1(Ω; R) such that Mt → M∞
a.s. and in L1 as well.

(iii) Let X ∈ L1(Ω; R). Then

E(X|Ft) → E(X|F∞) as t →∞

a.s. and in L1 as well.

Theorem 3.6 (Supermartingale inequalities) Let {Mt}t≥0 be a real-valued
supermartingale. Let [a, b] be a bounded interval in R+. Then

c P
{

ω : sup
a≤t≤b

Mt(ω) ≥ c
}
≤ EMa + EM−

b ,

c P
{

ω : inf
a≤t≤b

Mt(ω) ≤ −c
}
≤ EM−

b .
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hold for all c > 0.

For submartingales we have the following well-known Doob inequality.

Theorem 3.7 (Doob’s submartingale inequalities) Let p > 1. Let {Mt}t≥0

be a real-valued nonnegative submartingale such that Mt ∈ Lp(Ω; R). Let [a, b]
be a bounded interval in R+. Then

E
(

sup
a≤t≤b

Mp
t

)
≤
(

p

p− 1

)p

EMp
b .

If we apply these results to an Rd-valued martingale, we obtain the following
Doob’s martingale inequalities.

Theorem 3.8 (Doob’s martingale inequalities) Let {Mt}t≥0 be an Rd-
valued martingale. Let [a, b] be a bounded interval in R+.
(i) If p ≥ 1 and Mt ∈ Lp(Ω; Rd), then

P
{

ω : sup
a≤t≤b

|Mt(ω)| ≥ c
}
≤ E|Mb|p

cp

holds for all c > 0.
(ii) If p > 1 and Mt ∈ Lp(Ω; Rd), then

E
(

sup
a≤t≤b

|Mt|p
)
≤
(

p

p− 1

)p

E|Mb|p.

To close this section we state one more useful convergence theorem.

Theorem 3.9 Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing
processes with A0 = U0 = 0 a.s. Let {Mt}t≥0 be a real-valued continuous local
martingale with M0 = 0 a.s. Let ξ be a nonnegative F0-measurable random
variable. Define

Xt = ξ + At − Ut + Mt for t ≥ 0.

If Xt is nonnegative, then{
lim

t→∞
At < ∞

}
⊂
{

lim
t→∞

Xt exists and is finite
}
∩
{

lim
t→∞

Ut < ∞
}

a.s.

where B ⊂ D a.s. means P (B∩Dc) = 0. In particular, if limt→∞ At < ∞ a.s.,
then for almost all ω ∈ Ω

lim
t→∞

Xt(ω) exists and is finite, and lim
t→∞

Ut(ω) < ∞.
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1.4 BROWNIAN MOTIONS

Brownian motion is the name given to the irregular movement of pollen
grains, suspended in water, observed by the Scottish botanist Robert Brown
in 1828. The motion was later explained by the random collisions with the
molecules of water. To describe the motion mathematically it is natural to
use the concept of a stochastic process Bt(ω), interpreted as the position of
the pollen grain ω at time t. Let us now give the mathematical definition of
Brownian motion.

Definition 4.1 Let (Ω,F , P ) be a probability space with a filtration {Ft}t≥0. A
(standard) one-dimensional Brownian motion is a real-valued continuous {Ft}-
adapted process {Bt}t≥0 with the following properties:

(i) B0 = 0 a.s.;
(ii) for 0 ≤ s < t < ∞, the increment Bt−Bs is normally distributed with

mean zero and variance t− s;
(iii) for 0 ≤ s < t < ∞, the increment Bt −Bs is independent of Fs.

We shall sometimes speak of a Brownian motion {Bt}0≤t≤T on [0, T ], for
some T > 0, and the meaning of this terminology is apparent.

If {Bt}t≥0 is a Brownian motion and 0 ≤ t0 < t1 < · · · < tk < ∞, then the
increments Bti−Bti−1 , 1 ≤ i ≤ k are independent, and we say that the Brownian
motion has independent increments. Moreover, the distribution of Bti − Bti−1

depends only on the difference ti − ti−1, and we say that the Brownian motion
has stationary increments.

The filtration {Ft} is a part of the definition of Brownian motion. How-
ever, we sometimes speak of a Brownian motion on a probability space (Ω,F , P )
without filtration. That is, {Bt}t≥0 is a a real-valued continuous process with
properties (i) and (ii) but the property (iii) is replaced by that it has the in-
dependent increments. In this case, define FB

t = σ(Bs : 0 ≤ s ≤ t) for t ≥ 0,
i.e. FB

t is the σ-algebra generated by {Bs : 0 ≤ s ≤ t}. We call {FB
t }t≥0 the

natural filtration generated by {Bt}. Clearly, {Bt} is a Brownian motion with
respect to the natural filtration {FB

t }. Moreover, if {Ft} is a “larger” filtration
in the sense that FB

t ⊂ Ft for t ≥ 0, and Bt−Bs is independent of Fs whenever
0 ≤ s < t < ∞, then {Bt} is a Brownian motion with respect to the filtration
{Ft}.

In the definition we do not require the probability space (Ω,F , P ) be com-
plete and the filtration {Ft} satisfy the usual conditions. However, it is often
necessary to work on a complete probability space with a filtration satisfying the
usual conditions. Let {Bt}t≥0 be a Brownian motion defined on a probability
space (Ω,F , P ). Let (Ω, F̄ , P ) be the completion of (Ω,F , P ). Clearly, {Bt} is
a Brownian motion on the complete probability space (Ω, F̄ , P ). Let N be the
collection of P -null sets, i.e. N = {A ∈ F̄ : P (A) = 0}. For t ≥ 0, define

F̄t = σ(FB
t ∪N ).
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We called {F̄t} the augmentation under P of the natural filtration {FB
t } gener-

ated by {Bt}. It is known that the augmentation {F̄t} is a filtration on (Ω, F̄ , P )
satisfying the usual condition. Moreover, {Bt} is a Brownian motion on (Ω, F̄ , P )
with respect to {F̄t}. This shows that given a Brownian motion {Bt}t≥0 on a
probability space (Ω,F , P ), one can construct a complete probability space with
a filtration satisfying the usual conditions to work on.

However, throughout this book, unless otherwise specified, we would rather
assume that (Ω,F , P ) is a complete probability space with a filtration {Ft}
satisfying the usual conditions, and the one-dimensional Brownian motion {Bt}
is defined on it. The Brownian motion has many important properties, and some
of them are summarized below:
(a) {−Bt} is a Brownian motion with respect to the same filtration {Ft}.
(b) Let c > 0. Define

Xt =
Bct√

c
for t ≥ 0.

Then {Xt} is a Brownian motion with respect to the filtration {Fct}.
(c) {Bt} is a continuous square-integrable martingale and its quadratic varia-

tion 〈B,B〉t = t for all t ≥ 0.
(d) The strong law of large numbers states that

lim
t→∞

Bt

t
= 0 a.s.

(e) For almost every ω ∈ Ω, the Brownian sample path B.(ω) is nowhere dif-
ferentiable.

(f) For almost every ω ∈ Ω, the Brownian sample path B.(ω) is locally Hölder
continuous with exponent δ if δ ∈ (0, 1

2 ). However, for almost every ω ∈
Ω, the Brownian sample path B.(ω) is nowhere Hölder continuous with
exponent δ > 1

2 .
Besides, we have the following well-known law of the iterated logarithm.

Theorem 4.2 (Law of the Iterated Logarithm, A. Hinčin (1933)) For
almost every ω ∈ Ω, we have

(i) lim sup
t↓0

Bt(ω)√
2t log log(1/t)

= 1, (ii) lim inf
t↓0

Bt(ω)√
2t log log(1/t)

= −1,

(iii) lim sup
t→∞

Bt(ω)√
2t log log t

= 1, (iv) lim inf
t→∞

Bt(ω)√
2t log log t

= −1.

This theorem shows that for any ε > 0 there exists a positive random
variable ρε such that for almost every ω ∈ Ω, the Brownian sample path B.(ω)
is within the interval ±(1 + ε)

√
2t log log t whenever t ≥ ρε(ω), that is

−(1 + ε)
√

2t log log t ≤ Bt(ω) ≤ (1 + ε)
√

2t log log t for all t ≥ ρε(ω).
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On the other hand, the bounds −(1− ε)
√

2t log log t and (1− ε)
√

2t log log t (for
0 < ε < 1) are exceeded in every t-neighbourhood of ∞ for every sample path.

Let us now define a d-dimensional Brownian motion.

Definition 4.3 A d-dimensional process {Bt = (B1
t , · · · , Bd

t )}t≥0 is called a
d-dimensional Brownian motion if every {Bi

t} is a one-dimensional Brownian
motion, and {B1

t }, · · · , {Bd
t } are independent.

For a d-dimensional Brownian motion, we still have

lim sup
t→∞

|Bt|√
2t log log t

= 1 a.s.

This is somewhat surprising because it means that the independent individual
components of Bt are not simultaneously of the order

√
2t log log t, otherwise

√
d

instead of 1 would have appeared in the right-hand side of the above equality.
It is easy to see that a d-dimensional Brownian motion is a d-dimensional

continuous martingale with the joint quadratic variations

〈Bi, Bj〉t = δijt for 1 ≤ i, j ≤ d,

where δij is the Dirac delta function, i.e.

δij =
{

1 for i = i,
0 for i 6= j.

It turns out that this property characterizes Brownian motion among continuous
local martingales. This is described by the following well-known Lévy theorem.

Theorem 4.4 (P. Lévy (1948)) Let {Mt = (M1
t , · · · ,Md

t )}t≥0 be a d-
dimensional continuous local martingale with respect to the filtration {Ft} and
M0 = 0 a.s. If

〈M i,M j〉t = δijt for 1 ≤ i, j ≤ d,

then {Mt = (M1
t , · · · ,Md

t )}t≥0 is a d-dimensional Brownian motion with respect
to {Ft}.

As an application of the Lévy theorem, one can show the following useful
result.

Theorem 4.5 Let M = {Mt}t≥0 ba a real-valued continuous local martingale
such that M0 = 0 and limt→∞〈M,M〉t = ∞ a.s. For each t ≥ 0, define the
stopping time

τt = inf{s : 〈M,M〉s > t}.

Then {Mτt}t≥0 is a Brownian motion with respect to the filtration {Fτt}t≥0.
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1.5 STOCHASTIC INTEGRALS

In this section we shall define the stochastic integral∫ t

0

f(s)dBs

with respect to an m-dimensional Brownian motion {Bt} for a class of d ×
m-matrix-valued stochastic processes {f(t)}. Since for almost all ω ∈ Ω, the
Brownian sample path B.(ω) is nowhere differentiable, the integral can not be
defined in the ordinary way. However, we can define the integral for a large
class of stochastic processes by making use of the stochastic nature of Brownian
motion. This integral was first defined by K. Itô in 1949 and is now known as
Itô stochastic integral. We shall now start to define the stochastic integral step
by step.

Let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions. Let B = {Bt}t≥0 be a one-dimensional Brownian
motion defined on the probability space adapted to the filtration.

Definition 5.1 Let 0 ≤ a < b < ∞. Denote by M2([a, b];R) the space of all
real-valued measurable {Ft}-adapted processes f = {f(t)}a≤t≤b such that

||f ||2a,b = E

∫ b

a

|f(t)|2dt < ∞. (5.1)

We identify f and f̄ in M2([a, b];R) if ||f − f̄ ||2a,b = 0. In this case we say that
f and f̄ are equivalent and write f = f̄ .

Clearly, || · ||a,b defines a metric on M2([a, b];R) and the space is complete
under this metric. Let us point out that for every f ∈ M2([a, b];R), there is
a predictable f̄ ∈ M2([a, b];R) such that f = f̄ . In fact, f has a progressively
measurable modification f̂ in M2([a, b];R) and then we may take

f̄(t) = lim sup
h↓0

1
h

∫ t

t−h

f̂(s)ds.

Thus, if necessary, we may assume that f ∈M2([a, b];R) is predictable without
loss of generality . However, in this book we would rather follow the usual
custom of not being very careful about the distinction between the equivalence
processes.

For stochastic processes f ∈ M2([a, b];R) we shall show how to define the
Itô integral

∫ b

a
f(t)dBt. The idea is natural: First define the integral

∫ b

a
g(t)dBt

for a class of simple processes g. Then we show that each f ∈M2([a, b];R) can be
approximated by such simple processes g’s and we define the limit of

∫ b

a
g(t)dBt

as the integral
∫ b

a
f(t)dBt. Let us first introduce the concept of simple processes.
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Definition 5.2 A real-valued stochastic process g = {g(t)}a≤t≤b is called a
simple (or step) process if there exists a partition a = t0 < t1 < · · · < tk = b
of [a, b], and bounded random variables ξi, 0 ≤ i ≤ k − 1 such that ξi is Fti-
measurable and

g(t) = ξ0I[t0, t1](t) +
k−1∑
i=1

ξiI(ti, ti+1](t). (5.2)

Denote by M0([a, b];R) the family of all such processes.

Clearly, M0([a, b];R) ⊂ M2([a, b];R). We now give the definition of the
Itô integral for such simple processes.

Definition 5.3 (Part 1 of the definition of Itô’s integral) For a simple
process g with the form of (5.2) in M0([a, b];R), define∫ b

a

g(t)dBt =
k−1∑
i=0

ξi(Bti+1 −Bti) (5.3)

and call it the stochastic integral of g with respect to the Brownian motion {Bt}
or the Itô integral.

Clearly, the stochastic integral
∫ b

a
g(t)dBt is Fb-measurable. We shall now

show that it belongs to L2(Ω; R).

Lemma 5.4 If g ∈M0([a, b];R), then

E

∫ b

a

g(t)dBt = 0, (5.4)

E
∣∣∣∫ b

a

g(t)dBt

∣∣∣2 = E

∫ b

a

|g(t)|2dt. (5.5)

Proof. Since ξi is Fti
-measurable whereas Bti+1 −Bti

is independent of Fti
,

E

∫ b

a

g(t)dBt =
k−1∑
i=0

E
[
ξi(Bti+1 −Bti)

]
=

k−1∑
i=0

Eξi E(Bti+1 −Bti) = 0.

Moreover, note that Btj+1 − Btj is independent of ξiξj(Bti+1 − Bti) if i < j.
Thus

E
∣∣∣∫ b

a

g(t)dBt

∣∣∣2 =
∑

0≤i,j≤k−1

E
[
ξiξj(Bti+1 −Bti)(Btj+1 −Btj )

]
=

k−1∑
i=0

E
[
ξ2
i (Bti+1 −Bti)

2
]

=
k−1∑
i=0

Eξ2
i E(Bti+1 −Bti)

2

=
k−1∑
i=0

Eξ2
i (ti+1 − ti) = E

∫ b

a

|g(t)|2dt
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as required.

Lemma 5.5 Let g1, g2 ∈M0([a, b];R) and let c1, c2 be two real numbers. Then
c1g1 + c2g2 ∈M0([a, b];R) and∫ b

a

[c1g1(t) + c2g2(t)]dBt = c1

∫ b

a

g1(t)dBt + c2

∫ b

a

g2(t)dBt.

The proof is left to the reader. We shall now use the properties shown in
Lemmas 5.4 and 5.5 to extend the integral definition from simple processes to
processes in M2([a, b];R). This is based on the following approximation result.

Lemma 5.6 For any f ∈ M2([a, b];R), there exists a sequence {gn} of simple
processes such that

lim
n→∞

E

∫ b

a

|f(t)− gn(t)|2dt = 0. (5.6)

Proof. We divide the whole proof into three steps.
Step 1. We first claim that for any f ∈M2([a, b];R), there exists a sequence

{ϕn} of bounded processes in M2([a, b];R) such that

lim
n→∞

E

∫ b

a

|f(t)− ϕn(t)|2dt = 0. (5.7)

In fact, for each n, put
ϕn(t) = [−n ∨ f(t)] ∧ n.

Then (5.7) follows by the dominated convergence theorem (i.e. Theorem 2.3).
Step 2. We next claim that if ϕ ∈M2([a, b];R) is bounded, say |ϕ| ≤ C =

const., then there exists a sequence {φn} of bounded continuous processes in
M2([a, b];R) such that

lim
n→∞

E

∫ b

a

|ϕ(t)− φn(t)|2dt = 0. (5.8)

In fact, for each n, let ρn : R → R+ be a continuous function such that ρn(s) = 0
for s ≤ − 1

n and s ≥ 0 and ∫ ∞

−∞
ρn(s)ds = 1.

Define

φn(t) = φn(t, ω) =
∫ b

a

ρn(s− t)ϕ(s, ω)ds.

Then for every ω, φn(·, ω) is continuous and |φn(t, ω)| ≤ C. Also φn is a mea-
surable {Ft}-adapted process. Moreover, for all ω ∈ Ω,

lim
n→∞

∫ b

a

|ϕ(t, ω)− φn(t, ω)|2dt = 0.
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So (5.8) follows by the bounded convergence theorem.
Step 3. We now claim that if φ ∈M2([a, b];R) is bounded and continuous,

then there exists a sequence {gn} of simple processes such that

lim
n→∞

E

∫ b

a

|φ(t)− gn(t)|2dt = 0. (5.9)

In fact, for each n, let

gn(t) = φ(a) I[a, a+(b−a)/n](t)

+
n−1∑
i=1

φ(a + i(b− a)/n) I(a+i(b−a)/n, a+(i+1)(b−a)/n](t).

Then gn ∈M0([a, b];R), and for every ω,

lim
n→∞

∫ b

a

|φ(t, ω)− gn(t, ω)|2dt = 0.

So (5.9) follows by the bounded convergence theorem once again. Finally, the
conclusion of the lemma follows clearly from steps 1–3 and the proof is now
complete.

We can now explain how to define the Itô integral for a process f ∈
M2([a, b];R). By Lemma 5.6, there is a sequence {gn} of simple processes such
that

lim
n→∞

E

∫ b

a

|f(t)− gn(t)|2dt = 0.

Thus, by Lemmas 5.4 and 5.5,

E
∣∣∣∫ b

a

gn(t)dBt −
∫ b

a

gm(t)dBt

∣∣∣2 = E
∣∣∣∫ b

a

[gn(t)− gm(t)]dBt

∣∣∣2
= E

∫ b

a

|gn(t)− gm(t)|2dt → 0 as n, m →∞.

In other words, {
∫ b

a
gn(t)dBt} is a Cauchy sequence in L2(Ω; R). So the limit ex-

ists and we define the limit as the stochastic integral. This leads to the following
definition.

Definition 5.7 (Part 2 of the definition of Itô’s integral) Let f ∈
M2([a, b];R). The Itô integral of f with respect to {Bt} is defined by∫ b

a

f(t)dBt = lim
n→∞

∫ b

a

gn(t)dBt in L2(Ω; R), (5.10)

where {gn} is a sequence of simple processes such that

lim
n→∞

E

∫ b

a

|f(t)− gn(t)|2dt = 0. (5.11)
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The above definition is independent of the particular sequence {gn}. For if
{hn} is another sequence of simple processes converging to f in the sense that

lim
n→∞

E

∫ b

a

|f(t)− hn(t)|2dt = 0,

then the sequence {ϕn}, where ϕ2n−1 = gn and ϕ2n = hn, is also convergent to f

in the same sense. Hence, by what we have proved, the sequence {
∫ b

a
ϕn(t)dBt}

is convergent in L2(Ω; R). It follows that the limits (in L2) of
∫ b

a
gn(t)dBt and

of
∫ b

a
hn(t)dBt are equal almost surely.
The stochastic integral has many nice properties. We first observe the

following:

Theorem 5.8 Let f, g ∈M2([a, b];R), and let α, β be two real numbers. Then

(i)
∫ b

a
f(t)dBt is Fb-measurable;

(ii) E
∫ b

a
f(t)dBt = 0;

(iii) E|
∫ b

a
f(t)dBt|2 = E

∫ b

a
|f(t)|2dt;

(vi)
∫ b

a
[αf(t) + βg(t)]dBt = α

∫ b

a
f(t)dBt + β

∫ b

a
g(t)dBt.

The proof is left to the reader. The next theorem improves the results (ii)
and (iii) of Theorem 5.8

Theorem 5.9 Let f ∈M2([a, b];R). Then

E
(∫ b

a

f(t)dB(t)|Fa

)
= 0, (5.12)

E
(∣∣∣∫ b

a

f(t)dB(t)
∣∣∣2|Fa

)
= E

(∫ b

a

|f(t)|2dt|Fa

)
=
∫ b

a

E(|f(t)|2|Fa)dt. (5.13)

We need a simple lemma.

Lemma 5.10 If f ∈M2([a, b];R) and ξ is a real-valued bounded Fa-measurable
random variable, then ξf ∈M2([a, b];R) and∫ b

a

ξf(t)dBt = ξ

∫ b

a

f(t)dBt. (5.14)

Proof. It is clear that ξf ∈ M2([a, b];R). If f is a simple processes, then
(5.14) follows from the definition of the stochastic integral. For general f ∈
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M2([a, b];R), let {gn} be a sequence of simple processes satisfying (5.11). Ap-
plying (5.14) to each gn and taking n →∞, the assertion (5.14) follows.

Proof of Theorem 5.9. By the definition of conditional expectation, (5.12) holds
if and only if

E
(
IA

∫ b

a

f(t)dB(t)
)

= 0

for all sets A ∈ Fa. But by Lemma 5.10 and Theorem 5.8,

E
(
IA

∫ b

a

f(t)dB(t)
)

= E

∫ b

a

IAf(t)dB(t) = 0

as required. The proof of (5.13) is similar.
Let T > 0 and f ∈ M2([0, T ];R). Clearly, for any 0 ≤ a < b ≤ T ,

{f(t)}a≤t≤b ∈M2([a, b];R) so
∫ b

a
f(t)dBt is well defined. It is easy to show that∫ b

a

f(t)dBt +
∫ c

b

f(t)dBt =
∫ c

a

f(t)dBt (5.15)

if 0 ≤ a < b < c ≤ T .

Definition 5.11 Let f ∈M2([0, T ];R). Define

I(t) =
∫ t

0

f(s)dBs for 0 ≤ t ≤ T,

where, by definition, I(0) =
∫ 0

0
f(s)dBs = 0. We call I(t) the indefinite Itô

integral of f .

Clearly, {I(t)} is {Ft}-adapted. We now show the very important martin-
gale property of the indefinite Itô integral.

Theorem 5.12 If f ∈M2([0, T ];R), then the indefinite integral {I(t)}0≤t≤T is
a square-integrable martingale with respect to the filtration {Ft}. In particular,

E

[
sup

0≤t≤T

∣∣∣∫ t

0

f(s)dBs

∣∣∣2] ≤ 4E

∫ T

0

|f(s)|2ds. (5.16)

Proof. Clearly, {I(t)}0≤t≤T is square-integrable. To show the martingale
property, let 0 ≤ s < t ≤ T . By (5.15) and Theorem 5.9

E(I(t)|Fs) = E(I(s)|Fs) + E
(∫ t

s

f(r)dBr|Fs

)
= I(s)

as desired. The inequality (5.16) now follows from Doob’s martingale inequality
(i.e. Theorem 3.8).
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Theorem 5.13 If f ∈ M2([0, T ];R), then the indefinite integral {I(t)}0≤t≤T

has a continuous version.

Proof. Let {gn} be a sequence of simple processes such that

lim
n→∞

E

∫ T

0

|f(s)− gn(s)|2ds = 0. (5.17)

Note from the definition of the stochastic integral and the continuity of the
Brownian motion that the indefinite integrals

In(t) =
∫ t

0

gn(s)dBs, 0 ≤ t ≤ T

are continuous. By Theorem 5.12, {In(t)− Im(t)} is a martingale, for each pair
of integers n, m. Hence, by Doob’s martingale inequality (i.e. Theorem 3.8), for
any ε > 0

P
{

sup
0≤t≤T

|In(t)− Im(t)| ≥ ε
}
≤ 1

ε2
E|In(T )− Im(T )|2

=
1
ε2

E

∫ T

0

|gn(s)− gm(s)|2ds → 0 as n, m →∞.

For each k = 1, 2, · · ·, taking ε = k−2 it follows that for some nk sufficiently
large,

P
{

sup
0≤t≤T

|Ink
(t)− Im(t)| ≥ 1

k2

}
≤ 1

k2
if m ≥ nk.

One can then choose the nk in such a way that nk ↑ ∞ as k →∞ and

P
{

sup
0≤t≤T

|Ink
(t)− Ink+1(t)| ≥

1
k2

}
≤ 1

k2
, k ≥ 1.

Since
∑

k−2 < ∞, the Borel–Cantelli lemma (i.e. Lemma 2.4) implies that there
exists a set Ω0 ∈ F with P (Ω0) = 0 and an integer-valued random variable k0

such that for every ω ∈ Ω0,

sup
0≤t≤T

|Ink
(t, ω)− Ink+1(t, ω)| < 1

k2
if k ≥ k0(ω).

In other words, with probability 1, {Ink
(t)}k≥1 is uniformly convergent in t ∈

[0, T ], and therefore the limit, denoted by J(t), is continuous in t ∈ [0, T ] for
almost all ω ∈ Ω. Since (5.17) implies

lim
k→∞

Ink
(t) =

∫ t

0

f(s)dBs in L2(Ω, R),
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it follows that

J(t) =
∫ t

0

f(s)dBs a.s.

That is, the indefinite integral has a continuous version.
From now on, when we speak of the indefinite integral we always mean a

continuous version of it.

Theorem 5.14 Let f ∈ M2([0, T ];R). Then the indefinite integral I =
{I(t)}0≤t≤T is a square-integrable continuous martingale and its quadratic vari-
ation is given by

〈I, I〉t =
∫ t

0

|f(s)|2ds, 0 ≤ t ≤ T. (5.18)

Proof. Obviously we need only to show (5.18). By the definition of the quadratic
variation we need to show that {I2(t)− 〈I, I〉t} is a continuous martingale van-
ishing at t = 0. But, obviously I2(0)− 〈I, I〉0 = 0. Moreover, if 0 ≤ r < t ≤ T ,
by Theorem 5.9,

E(I2(t)− 〈I, I〉t|Fr)

= I2(r)− 〈I, I〉r + 2I(r)E
(∫ t

r

f(s)dBs|Fr

)
+ E

(∣∣∣∫ t

r

f(s)dBs

∣∣∣2|Fr

)
− E

(∫ t

r

|f(s)|2ds|Fr

)
= I2(r)− 〈I, I〉r

as desired.
Let us now proceed to define the stochastic integrals with stopping time. We

observe that if τ is an {Ft}-stopping time, then {I[[0, τ ]](t)}t≥0 is a bounded right
continuous {Ft}-adapted process. In fact, the boundedness and right continuity
are obvious. Moreover, for each t ≥ 0,

{ω : I[[0, τ ]](t, ω) ≤ r} =

 ∅ ∈ Ft if r < 0,
{ω : τ(ω) < t} ∈ Ft if 0 ≤ r < 1,
Ω ∈ Ft if r ≥ 1,

that is, I[[0, τ ]](t) is Ft-measurable. Therefore, {I[[0, τ ]](t)}t≥0 is also predictable.

Definition 5.15 Let f ∈ M2([0, T ];R), and let τ be an {Ft}-stopping time
such that 0 ≤ τ ≤ T . Then, {I[[0, τ ]](t)f(t)}0≤t≤T ∈ M2([0, T ];R) clearly, and
we define ∫ τ

0

f(s)dBs =
∫ T

0

I[[0, τ ]](s)f(s)dBs.
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Furthermore, if ρ is another stopping time with 0 ≤ ρ ≤ τ , we define∫ τ

ρ

f(s)dBs =
∫ τ

0

f(s)dBs −
∫ ρ

0

f(s)dBs.

It is easy to see that∫ τ

ρ

f(s)dBs =
∫ T

0

I]]ρ, τ ]](s)f(s)dBs. (5.19)

If applying Theorem 5.8 to this we immediately obtain:

Theorem 5.16 Let f ∈ M2([0, T ];R), and let ρ, τ be two stopping times such
that 0 ≤ ρ ≤ τ ≤ T . Then

E

∫ τ

ρ

f(s)dBs = 0,

E
∣∣∣∫ τ

ρ

f(s)dBs

∣∣∣2 = E

∫ τ

ρ

|f(s)|2ds.

However, the next theorem improves these results and is also a generalization of
Theorem 5.9.

Theorem 5.17 Let f ∈ M2([0, T ];R), and let ρ, τ be two stopping times such
that 0 ≤ ρ ≤ τ ≤ T . Then

E
(∫ τ

ρ

f(s)dBs|Fρ

)
= 0, (5.20)

E
(∣∣∣∫ τ

ρ

f(s)dBs

∣∣∣2|Fρ

)
= E

(∫ τ

ρ

|f(s)|2ds|Fρ

)
. (5.21)

We need a useful lemma.

Lemma 5.18 Let f ∈ M2([0, T ];R), and let τ be a stopping time such that
0 ≤ τ ≤ T . Then ∫ τ

0

f(s)dBs = I(τ),

where {I(t)}0≤t≤T is the indefinite integral of f given by Definition 5.11.

We leave the proof of this lemma to the reader, but prove Theorem 5.17.

Proof of Theorem 5.17. By Theorem 5.14 and the Doob martingale stopping
theorem (i.e. Theorem 3.3),

E(I(τ)|Fρ) = I(ρ) (5.22)
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and
E(I2(τ)− 〈I, I〉τ |Fρ) = I2(ρ)− 〈I, I〉ρ, (5.23)

where {〈I, I〉t} is defined by (5.18). Applying Lemma 5.18 one then sees from
(5.22) that

E
(∫ τ

ρ

f(s)dBs|Fρ

)
= E(I(τ)− I(ρ)|Fρ) = 0

which is (5.20). Moreover, by (5.22) and (5.23),

E(|I(τ)− I(ρ)|2|Fρ) = E(I2(τ)|Fρ)− 2I(ρ)E(I(τ)|Fρ) + I2(ρ)

= E(I2(τ)|Fρ)− I2(ρ) = E(〈I, I〉τ − 〈I, I〉ρ|Fρ) = E
(∫ τ

ρ

|f(s)|2ds|Fρ

)
which, by Lemma 5.18, is the required (5.21). The proof is complete.

Corollary 5.19 Let f, g ∈ M2([0, T ];R), and let ρ, τ be two stopping times
such that 0 ≤ ρ ≤ τ ≤ T . Then

E
(∫ τ

ρ

f(s)dBs

∫ τ

ρ

g(s)dBs|Fρ

)
= E

(∫ τ

ρ

f(s)g(s)ds|Fρ

)
.

Proof. By Theorem 5.17,

4E
(∫ τ

ρ

f(s)dBs

∫ τ

ρ

g(s)dBs|Fρ

)
=E
(∣∣∣∫ τ

ρ

(f(s) + g(s))dBs

∣∣∣2|Fρ

)
− E

(∣∣∣∫ τ

ρ

(f(s)− g(s))dBs

∣∣∣2|Fρ

)
=E
(∫ τ

ρ

(f(s) + g(s))2ds|Fρ

)
− E

(∫ τ

ρ

(f(s)− g(s))2ds|Fρ

)
=4E

(∫ τ

ρ

f(s)g(s)ds|Fρ

)
as desired.

We shall now extend the Itô stochastic integral to the multi-dimensional
case. Let {Bt = (B1

t , · · · , Bm
t )T }t≥0 be an m-dimensional Brownian motion de-

fined on the complete probability space (Ω,F , P ) adapted to the filtration {Ft}.
Let M2([0, T ];Rd×m) denote the family of all d×m-matrix-valued measurable
{Ft}-adapted processes f = {(fij(t))d×m}0≤t≤T such that

E

∫ T

0

|f(s)|2dt < ∞.

Here, and throughout this book, |A| will denote the trace norm for matrix A,
i.e. |A| =

√
trace(AT A).
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Definition 5.20 Let f ∈ M2([0, T ];Rd×m). Using matrix notation, we define
the multi-dimensional indefinite Itô integral

∫ t

0

f(s)dBs =
∫ t

0

 f11(s) · · · f1m(s)
...

...
fd1(s) · · · fdm(s)


 dB1

s
...

dBm
s


to be the d-column-vector-valued process whose i’th component is the following
sum of 1-dimensional Itô integrals

m∑
j=1

∫ t

0

fij(s)dBj
s .

Clearly, the Itô integral is an Rd-valued continuous martingale with respect
to {Ft}. Besides, it has the following important properties.

Theorem 5.21 Let f ∈ M2([0, T ];Rd×m), and let ρ, τ be two stopping times
such that 0 ≤ ρ ≤ τ ≤ T . Then

E
(∫ τ

ρ

f(s)dBs|Fρ

)
= 0, (5.24)

E
(∣∣∣∫ τ

ρ

f(s)dBs

∣∣∣2|Fρ

)
= E

(∫ τ

ρ

|f(s)|2ds|Fρ

)
. (5.25)

The assertion (5.24) follows from the definition of multi-dimensional Itô
integral and Theorem 5.17, while (5.25) follows from Theorem 5.17 and the
following lemma.

Lemma 5.22 Let {B1
t }t≥0 and {B2

t }t≥0 be two independent 1-dimensional
Brownian motions. Let f, g ∈ M2([0, T ];R), and let ρ, τ be two stopping times
such that 0 ≤ ρ ≤ τ ≤ T . Then

E
(∫ τ

ρ

f(s)dB1
s

∫ τ

ρ

g(s)dB2
s |Fρ

)
= 0. (5.26)

Proof. We first claim that if ϕ, φ ∈M2([a, b];R). Then

E
(∫ b

a

ϕ(s)dB1
s

∫ b

a

φ(s)dB2
s

)
= 0. (5.27)

In fact, let ϕ, φ be simple processes with the forms

ϕ(t) = ξ0I[t0, t1](t) +
k−1∑
i=1

ξiI(ti, ti+1](t)
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and

φ(t) = ζ0I[t̄0, t̄1](t) +
m−1∑
j=1

ζiI(t̄j , t̄j+1](t).

Then

E
(∫ b

a

ϕ(s)dB1
s

∫ b

a

φ(s)dB2
s

)
=

k−1∑
i=0

m−1∑
j=0

E
[
ξiζj(B1

ti+1
−B1

ti
)(B2

t̄j+1
−B2

t̄j
)
]

But for every pair of i, j, if ti ≤ t̄j , then B2
t̄j+1

−B2
t̄j

is independent of ξiζj(B1
ti+1

−
B1

ti
) and hence

E
[
ξiζj(B1

ti+1
−B1

ti
)(B2

t̄j+1
−B2

t̄j
)
]

= 0.

Similarly, it still holds if ti > t̄j . In other words, we have shown that (5.27)
holds for simple processes ϕ, φ, but the general case follows by the approximation
procedure.

We next observe that for any 0 ≤ r < t ≤ T

E
(∫ t

r

f(s)dB1
s

∫ t

r

g(s)dB2
s |Fr

)
= 0, (5.28)

since, by (5.27) and Lemma 5.10, for any A ∈ Fr

E
(
IA

∫ t

r

f(s)dB1
s

∫ t

r

g(s)dB2
s

)
= E

(∫ t

r

IAf(s)dB1
s

∫ t

r

g(s)dB2
s

)
= 0.

Therefore

E
(∫ t

0

f(s)dB1
s

∫ t

0

g(s)dB2
s |Fr

)
=
∫ r

0

f(s)dB1
s

∫ r

0

g(s)dB2
s +

∫ r

0

f(s)dB1
sE
(∫ t

r

g(s)dB2
s |Fr

)
+
∫ r

0

g(s)dB2
sE
(∫ t

r

f(s)dB1
s |Fr

)
+ E

(∫ t

r

f(s)dB1
s

∫ t

r

g(s)dB2
s |Fr

)
=
∫ r

0

f(s)dB1
s

∫ r

0

g(s)dB2
s .

That is, {
∫ t

0
f(s)dB1

s

∫ t

0
g(s)dB2

s}0≤t≤T is a martingale with respect to {Ft}.
Hence, by the Doob martingale stopping theorem,

E
(∫ τ

0

f(s)dB1
s

∫ τ

0

g(s)dB2
s |Fρ

)
=
∫ ρ

0

f(s)dB1
s

∫ ρ

0

g(s)dB2
s . (5.29)

Now the assertion (5.26) follows from (5.29) easily. The proof of the lemma,
hence of Theorem 5.21 is now complete.
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We shall finally extend the stochastic integral to a larger class of stochas-
tic processes. Let L2(R+;Rd×m) denote the family of all d ×m-matrix-valued
measurable {Ft}-adapted processes f = {f(t)}t≥0 such that∫ T

0

|f(t)|2dt < ∞ a.s. for every T > 0.

Let M2(R+;Rd×m) denote the family of all processes f ∈ L2(R+;Rd×m) such
that

E

∫ T

0

|f(t)|2dt < ∞ for every T > 0.

Clearly, if f ∈ M2(R+;Rd×m), then {f(t)}0≤t≤T ∈ M2([0, T ];Rd×m) for every
T > 0. Hence, the indefinite integral

∫ t

0
f(s)dBs, t ≥ 0 is well defined, and it

is an Rd-valued continuous square-integrable martingale. However, we aim to
define the integral for all processes in L2(R+;Rd×m). Let f ∈ L2(R+;Rd×m).
For each integer n ≥ 1, define the stopping time

τn = n ∧ inf
{
t ≥ 0 :

∫ t

0

|f(s)|2ds ≥ n
}
.

Clearly, τn ↑ ∞ a.s. Moreover, {f(t)I[[0,τn]](t)}t≥0 ∈ M2(R+;Rd×m) so the
integral

In(t) =
∫ t

0

f(s)I[[0,τn]](s)dBs, t ≥ 0

is well defined. Note that for 1 ≤ n ≤ m and t ≥ 0,

Im(t ∧ τn) =
∫ t∧τn

0

f(s)I[[0,τm]](s)dBs =
∫ t

0

f(s)I[[0,τm]](s)I[[0,τn]](s)dBs

=
∫ t

0

f(s)I[[0,τn]](s)dBs = In(t),

which implies
Im(t) = In(t), 0 ≤ t ≤ τn.

So we may define the indefinite stochastic integral {I(t)}t≥0 as

I(t) = In(t) on 0 ≤ t ≤ τn. (5.30)

Definition 5.23 Let f = {f(t)}t≥0 ∈ M2(R+;Rd×m). The indefinite Itô
integral of f with respect to {Bt} is the Rd-valued process {I(t)}t≥0 defined by
(5.30). As before, we usually write

∫ t

0
f(s)dBs instead of I(t).

It is clear that the Itô integral
∫ t

0
f(s)dBs, t ≥ 0 is a Rd-valued continuous

local martingale.



Sec.1.6] Itô’s Formula 31

1.6 ITÔ’S FORMULA

In the previous section we defined the Itô stochastic integrals. However
the basic definition of the integrals is not very convenient in evaluating a given
integral. This is similar to the situation for classical Lebesgue integrals, where
we do not use the basic definition but rather the fundamental theorem of calculus
plus the chain rule in the explicit calculations. For example, it is very easy to
use the chain rule to calculate

∫ t

0
cos sds = sin t but not so if you use the basic

definition. In this section we shall establish the stochastic version of the chain
rule for the Itô integrals, which is known as Itô’s formula. We shall see in this
book that Itô’s formula is not only useful for evaluating the Itô integrals but,
more importantly, it plays a key role in stochastic analysis.

We shall first establish the one-dimensional Itô formula and then generalize
it to the multi-dimensional case. Let {Bt}t≥0 be a one-dimensional Brownian
motion defined on the complete probability space (Ω,F , P ) adapted to the fil-
tration {Ft}t≥0. Let L1(R+;Rd) denote the family of all Rd-valued measurable
{Ft}-adapted processes f = {f(t)}t≥0 such that∫ T

0

|f(t)|dt < ∞ a.s. for every T > 0.

Definition 6.1 A one-dimensional Itô process is a continuous adapted process
x(t) on t ≥ 0 of the form

x(t) = x(0) +
∫ t

0

f(s)ds +
∫ t

0

g(s)dBs, (6.1)

where f ∈ L1(R+;R) and g ∈ L2(R+;R). We shall say that x(t) has stochastic
differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt + g(t)dBt. (6.2)

We shall sometimes speak of Itô process x(t) and its stochastic differential
dx(t) on t ∈ [a, b], and the meaning is apparent.

Let C2,1(Rd ×R+;R) denote the family of all real-valued functions V (x, t)
defined on Rd×R+ such that they are continuously twice differentiable in x and
once in t. If V ∈ C2,1(Rd ×R+;R), we set

Vt =
∂V

∂t
, Vx =

( ∂V

∂x1
, · · · , ∂V

∂xd

)
,

Vxx =
( ∂2V

∂xi∂xj

)
d×d

=


∂2V

∂x1∂x1
· · · ∂2V

∂x1∂xd

...
...

∂2V
∂xd∂x1

· · · ∂2V
∂xd∂xd

 .
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Clearly, when V ∈ C2,1(R×R+;R), we have Vx = ∂V
∂x and Vxx = ∂2V

∂x2 .
We are now ready to state the first main result in this section.

Theorem 6.2 (The one-dimensional Itô formula) Let x(t) be an Itô process
on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt + g(t)dBt,

where f ∈ L1(R+;R) and g ∈ L2(R+;R). Let V ∈ C2,1(R × R+;R). Then
V (x(t), t) is again an Itô process with the stochastic differential given by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t) +

1
2
Vxx(x(t), t)g2(t)

]
dt

+ Vx(x(t), t)g(t)dBt a.s. (6.3)

Proof. The proof is rather technical and we shall divide the whole proof into
several steps.

Step 1. We may assume that x(t) is bounded, say by a constant K so the
values of V (x, t) for x /∈ [−K, K] are irrelevant. Otherwise, for each n ≥ 1,
define the stopping time

τn = inf{t ≥ 0 : |x(t)| ≥ n}.

Clearly, τn ↑ ∞ a.s. Also define the stochastic process

xn(t) = [−n ∨ x(0)] ∧ n +
∫ t

0

f(s)I[[0,τn]](s)ds +
∫ t

0

g(s)I[[0,τn]](s)dBs

on t ≥ 0. Then |xn(t)| ≤ n, that is xn(t) is bounded. Moreover, for every t ≥ 0
and almost every ω ∈ Ω, there exists an integer no = no(t, ω) such that

xn(s, ω) = x(s, ω) on 0 ≤ s ≤ t

provided n ≥ no. Therefore, if we can establish (6.3) for xn(t), that is

V (xn(t), t)− V (x(0), 0)

=
∫ t

0

[
Vt(xn(s), s) + Vx(xn(s), s)f(s)I[[0,τn]](s)

+
1
2
Vxx(xn(s), s)g2(s)I[[0,τn]](s)

]
ds

+
∫ t

0

Vx(xn(s), s)g(s)I[[0,τn]](s)dBs,

then we obtain the desired result upon letting n →∞.
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Step 2. We may assume that V (x, t) is C2, i.e. it is continuously twice
differentiable in both variables (x, t), otherwise we can find a sequence {Vn(x, t)}
of C2-functions such that

Vn(x, t) → V (x, t),
∂

∂t
Vn(x, t) → Vt(x, t),

∂

∂x
Vn(x, t) → Vx(x, t),

∂2

∂x2
Vn(x, t) → Vxx(x, t)

uniformly on every compact subset of R×R+ (see e.g. Friedman (1975)). If we
can show the Itô formula for every Vn, that is

Vn(x(t), t)− Vn(x(0), 0)

=
∫ t

0

[
∂

∂t
Vn(x(s), s) +

∂

∂x
Vn(x(s), s)f(s) +

1
2

∂2

∂x2
Vn(x(s), s)g2(s)

]
ds

+
∫ t

0

∂

∂x
Vn(x(s), s)g(s)dBs,

then, letting n → ∞, we obtain the desired result (6.3). By steps 1 and 2,
we may assume without loss of generality that V, Vt, Vtt, Vx, Vtx and Vxx are all
bounded on R× [0, t] for every t ≥ 0.

Step 3. If we can show (6.3) in the case that both f and g are simple
processes, then the general case follows by approximation procedure. (The pro-
cesses in L1(R+;R) can be approximated by simple processes in a similar way
as shown in the proof of Lemma 5.6 but we leave the details to the reader.)

Step 4. We now fix t > 0 arbitrarily, and assume that V, Vt, Vtt, Vx, Vtx, Vxx

are bounded on R × [0, t], and f(s), g(s) are simple processes on s ∈ [0, t]. Let
Π = {t0, t1, · · · , tk} be a partition of [0, t] (i.e. 0 = t0 < t1 < · · · < tk = t)
sufficiently fine that f(s) and g(s) are “random constant” on every (ti, ti+1] in
the sense that

f(s) = fi, g(s) = gi if s ∈ (ti, ti+1].

Using the well-known Taylor expansion formula we get

V (x(t), t)− V (x(0), 0) =
k−1∑
i=0

[
V (x(ti+1), ti+1)− V (x(ti), ti)

]
=

k−1∑
i=0

Vt(x(ti), ti)∆ti +
k−1∑
i=0

Vx(x(ti), ti)∆xi +
1
2

k−1∑
i=0

Vtt(x(ti), ti)(∆ti)2

+
k−1∑
i=0

Vtx(x(ti), ti)∆ti∆xi +
1
2

k−1∑
i=0

Vxx(x(ti), ti)(∆xi)2 +
k−1∑
i=0

Ri, (6.4)

where

∆ti = ti+1 − ti, ∆xi = x(ti+1)− x(ti), Ri = o((∆ti)2 + (∆xi)2).
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Set |Π| = max0≤i≤k−1 ∆ti. It is easy to see that when |Π| → 0, with probability
1,

k−1∑
i=0

Vt(x(ti), ti)∆ti →
∫ t

0

Vt(x(s), s)ds, (6.5)

k−1∑
i=0

Vx(x(ti), ti)∆xi →
∫ t

0

Vx(x(s), s)dx(s)

=
∫ t

0

Vx(x(s), s)f(s)ds +
∫ t

0

Vx(x(s), s)g(s)dBs, (6.6)

k−1∑
i=0

Vtt(x(ti), ti)(∆ti)2 → 0, and
k−1∑
i=0

Ri → 0. (6.7)

Note that

k−1∑
i=0

Vtx(x(ti), ti)∆ti∆xi

=
k−1∑
i=0

Vtx(x(ti), ti)fi(∆ti)2 +
k−1∑
i=0

Vtx(x(ti), ti)gi∆ti∆Bi,

where ∆Bi = Bti+1 − Bti
. When |Π| → 0, the first term tends to 0 a.s. while

the second term tends to 0 in L2 since

E
(k−1∑

i=0

Vtx(x(ti), ti)gi∆ti∆Bi

)2

=
k−1∑
i=0

E[Vtx(x(ti), ti)gi]2(∆ti)3 → 0.

In other words, we have shown (due to the assumption of boundedness) that

k−1∑
i=0

Vtx(x(ti), ti)∆ti∆xi → 0 in L2. (6.8)

Note also that

k−1∑
i=0

Vxx(x(ti), ti)(∆xi)2

=
k−1∑
i=0

Vxx(x(ti), ti)
[
f2

i (∆ti)2 + 2figi∆ti∆Bi

]
+

k−1∑
i=0

Vxx(x(ti), ti)g2
i (∆Bi)2.

The first term tends to 0 in L2 as |Π| → 0 in the same reason as before, while we
claim the second term tends to

∫ t

0
Vxx(x(s), s)g2(s)ds in L2. To show the latter,
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we set h(t) = Vxx(x(t), t)g2(t), hi = Vxx(x(ti), ti)g2
i , and compute

E
(k−1∑

i=0

hi(∆Bi)2 −
k−1∑
i=0

hi∆ti

)2

=E
(k−1∑

i=0

k−1∑
j=0

hihj [(∆Bi)2 −∆ti][(∆Bj)2 −∆tj ]
)

=
k−1∑
i=0

E
(
h2

i [(∆Bi)2 −∆ti]2
)

=
k−1∑
i=0

Eh2
i E
[
(∆Bi)4 − 2(∆Bi)2∆ti + (∆ti)2

]
=

k−1∑
i=0

Eh2
i

[
3(∆ti)2 − 2(∆ti)2 + (∆ti)2

]
=2

k−1∑
i=0

Eh2
i (∆ti)2 → 0,

where we have used the known fact that E(∆Bi)2n = (2n)!(∆ti)n/(2nn!). Thus

k−1∑
i=0

hi(∆Bi)2 →
∫ t

0

h(s)ds in L2.

In other words, we have already shown that

k−1∑
i=0

Vxx(x(ti), ti)(∆xi)2 →
∫ t

0

Vxx(x(s), s)g2(s)ds in L2. (6.9)

Substituting (6.5)–(6.9) into (6.4) we obtain that

V (x(t), t)− V (x(0), 0)

=
∫ t

0

[
Vt(x(s), s) + Vx(x(s), s)f(s) +

1
2
Vxx(x(s), s)g2(s)

]
ds

+
∫ t

0

Vx(x(s), s)g(s)dBs a.s.

which is the required (6.3). The proof is now complete.
We shall now extend the 1-dimensional Itô formula to the multi-dimensional

case. Let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0 be an m-dimensional Brownian mo-
tion defined on the complete probability space (Ω,F , P ) adapted to the filtration
{Ft}t≥0.
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Definition 6.3 A d-dimensional Itô process is an Rd-valued continuous adapted
process x(t) = (x1(t), · · · , xd(t))T on t ≥ 0 of the form

x(t) = x(0) +
∫ t

0

f(s)ds +
∫ t

0

g(s)dB(s),

where f = (f1, · · · , fd)T ∈ L1(R+;Rd) and g = (gij)d×m ∈ L2(R+;Rd×m). We
shall say that x(t) has stochastic differential dx(t) on t ≥ 0 given by

dx(t) = f(t)dt + g(t)dB(t).

Theorem 6.4 (The multi-dimensional Itô formula) Let x(t) be a d-
dimensional Itô process on t ≥ 0 with the stochastic differential

dx(t) = f(t)dt + g(t)dB(t),

where f ∈ L1(R+;Rd) and g ∈ L2(R+;Rd×m). Let V ∈ C2,1(Rd×R+;R). Then
V (x(t), t) is again an Itô process with the stochastic differential given by

dV (x(t), t) =
[
Vt(x(t), t) + Vx(x(t), t)f(t)

+
1
2
trace

(
gT (t)Vxx(x(t), t)g(t)

)]
dt + Vx(x(t), t)g(t)dB(t) a.s. (6.10)

The proof is similar to the one-dimensional case so is omitted. Let us now
introduce formally a multiplication table:

dtdt = 0, dBidt = 0,

dBidBi = dt, dBidBj = 0 if i 6= j.

Then, for example,

dxi(t)dxj(t) =
m∑

k=1

gik(t)gjk(t)dt. (6.11)

Moreover, the Itô formula can be written as

dV (x(t), t) = Vt(x(t), t)dt + Vx(x(t), t)dx(t)

+
1
2
dxT (t)Vxx(x(t), t)dx(t). (6.12)

Note that if x(t) were continuously differentiable in t, then (by the classical
calculus formula for total derivatives) the term 1

2dxT (t)Vxx(x(t), t)dx(t) would
not appear. For example, let V (x, t) = x1x2, then (6.11) and (6.12) yield

d[x1(t)x2(t)] = x1(t)dx2(t) + x2(t)dx1(t) + dx1dx2 (6.13)

= x1(t)dx2(t) + x2(t)dx1(t) +
m∑

k=1

g1k(t)g2k(t)dt,
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which is different from the classical formula of integration by parts d(uv) =
vdu + udv if both u, v are differentiable. However we do have the stochastic
version of integration by parts formula which is similar to the classical one.

Theorem 6.5 (Integration by parts formula) Let x(t), t ≥ 0 be a 1-
dimensional Itô process with the stochastic differential

dx(t) = f(t)dt + g(t)dB(t),

where f ∈ L1(R+;R) and g ∈ L2(R+;R1×m). Let y(t), t ≥ 0 be a real-valued
continuous adapted process of finite variation. Then

d[x(t)y(t)] = y(t)dx(t) + x(t)dy(t), (6.14)

that is

x(t)y(t)− x(0)y(0) =
∫ t

0

y(s)[f(s)ds + g(s)dB(s)] +
∫ t

0

x(s)dy(s), (6.15)

where the last integral is the Lebesgue-Stieltjes integral.

Let us now give a number of examples to illustrate the use of Itô’s formula
in evaluating the stochastic integrals.

Example 6.6 Let B(t) be a 1-dimensional Brownian motion. To compute the
stochastic integral ∫ t

0

B(s)dB(s),

we apply the Itô formula to B2(t) (i.e. let V (x, t) = x2 and x(t) = B(t)), and
get

d(B2(t)) = 2B(t)dB(t) + dt.

That is

B2(t) = 2
∫ t

0

B(s)dB(s) + t,

which implies that ∫ t

0

B(s)dB(s) =
1
2
[B2(t)− t].

Example 6.7 Let B(t) be a 1-dimensional Brownian motion. To compute the
stochastic integral ∫ t

0

e−s/2+B(s)dB(s),

we let V (x, t) = e−t/2+x and x(t) = B(t), and then, by the Itô formula, we
obtain

d
[
e−t/2+B(t)

]
= −1

2
e−t/2+B(t)dt + e−t/2+B(t)dB(t) +

1
2
e−t/2+B(t)dt

= e−t/2+B(t)dB(t).
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That yields ∫ t

0

e−s/2+B(s)dB(s) = e−t/2+B(t) − 1.

Example 6.8 Let B(t) be a 1-dimensional Brownian motion. What is the inte-
gration of the Brownian sample path over the time interval [0, t], i.e.

∫ t

0
B(s)ds?

The integration by parts formula yields

d[tB(t)] = B(t)dt + tdB(t).

Therefore ∫ t

0

B(s)ds = tB(t)−
∫ t

0

sdB(s).

On the other hand, we may apply Itô’s formula to B3(t) to obtain

dB3(t) = 3B2(t)dB(t) + 3B(t)dt,

which gives the alternative∫ t

0

B(s)ds =
1
3
B3(t)−

∫ t

0

B2(s)dB(s).

Example 6.9 Let B(t) be an m-dimensional Brownian motion. Let V : Rm →
R be C2. Then Itô’s formula implies

V (B(t)) = V (0) +
1
2

∫ t

0

∆V (B(s))ds +
∫ t

0

Vx(B(s))dB(s),

where ∆ =
∑m

i=1
∂2

∂x2
i

is the Laplace operator. In particular, let V be a quadratic

function, i.e. V (x) = xT Qx, where Q is an m×m matrix. Then

BT (t)QB(t) = trace(Q)t +
∫ t

0

BT (s)(Q + QT )dB(s).

Example 6.10 Let x(t) be a d-dimensional Itô process as given by Definition
6.3. Let Q be a d× d matrix. Then

xT (t)Qx(t)− xT (0)Qx(0)

=
∫ t

0

(
xT (s)(Q + QT )f(s) +

1
2
trace[gT (s)(Q + QT )g(s)]

)
ds

+
∫ t

0

xT (s)(Q + QT )g(s)dB(s).
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1.7 MOMENT INEQUALITIES

In this section we shall apply Itô’s formula to establish several very im-
portant moment inequalities for stochastic integrals as well as the exponential
martingale inequality. These will demonstrate the powerfulness of the Itô for-
mula.

Throughout this section, we let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0 be
an m-dimensional Brownian motion defined on the complete probability space
(Ω,F , P ) adapted to the filtration {Ft}t≥0.

Theorem 7.1 Let p ≥ 2. Let g ∈M2([0, T ];Rd×m) such that

E

∫ T

0

|g(s)|pds < ∞.

Then

E
∣∣∣∫ T

0

g(s)dB(s)
∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|g(s)|pds. (7.1)

In particular, for p = 2, there is equality.

Proof. For p = 2 the required result follows from Theorem 5.21 so we only need
to show the theorem for the case of p > 2. For 0 ≤ t ≤ T , set

x(t) =
∫ t

0

g(s)dB(s).

By Itô’s formula and Theorem 5.21,

E|x(t)|p

=
p

2
E

∫ t

0

(
|x(s)|p−2|g(s)|2 + (p− 2)|x(s)|p−4|xT (s)g(s)|2

)
ds (7.2)

≤ p(p− 1)
2

E

∫ t

0

|x(s)|p−2|g(s)|2ds. (7.3)

Using Hölder’s inequality one then sees that

E|x(t)|p ≤ p(p− 1)
2

(
E

∫ t

0

|x(s)|pds

) p−2
p
(

E

∫ t

0

|g(s)|pds

) 2
p

=
p(p− 1)

2

(∫ t

0

E|x(s)|pds

) p−2
p
(

E

∫ t

0

|g(s)|pds

) 2
p

.

Note from (7.2) that E|x(t)|p is nondecreasing in t. It then follows

E|x(t)|p ≤ p(p− 1)
2

[
tE|x(t)|p

] p−2
p

(
E

∫ t

0

|g(s)|pds

) 2
p

.
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This yields

E|x(t)|p ≤
(

p(p− 1)
2

) p
2

t
p−2
2 E

∫ t

0

|g(s)|pds,

and the required (7.1) follows by replacing t with T .

Theorem 7.2 Under the same assumptions as Theorem 7.1,

E

(
sup

0≤t≤T

∣∣∣∫ t

0

g(s)dB(s)
∣∣∣p) ≤ ( p3

2(p− 1)

)p/2

T
p−2
2 E

∫ T

0

|g(s)|pds. (7.4)

Proof. Recall that the stochastic integral
∫ t

0
g(s)dB(s) is an Rd-valued contin-

uous martingale. Hence, by the Doob martingale inequality (i.e. Theorem 3.8),
we have

E

(
sup

0≤t≤T

∣∣∣∫ t

0

g(s)dB(s)
∣∣∣p) ≤ ( p

p− 1

)p

E
∣∣∣∫ T

0

g(s)dB(s)
∣∣∣p.

In view of Theorem 7.1, we then obtain the desired (7.4).
The following theorem is known as the Burkholder–Davis–Gundy inequal-

ity.

Theorem 7.3 Let g ∈ L2(R+;Rd×m). Define, for t ≥ 0,

x(t) =
∫ t

0

g(s)dB(s) and A(t) =
∫ t

0

|g(s)|2ds.

Then for every p > 0, there exist universal positive constants cp, Cp (depending
only on p), such that

cpE|A(t)|
p
2 ≤ E

(
sup

0≤s≤t
|x(s)|p

)
≤ CpE|A(t)|

p
2 (7.5)

for all t ≥ 0. In particular, one may take

cp = (p/2)p, Cp = (32/p)p/2 if 0 < p < 2;
cp = 1, Cp = 4 if p = 2;
cp = (2p)−p/2, Cp =

[
pp+1/2(p− 1)p−1

]p/2 if p > 2.

Proof. We may assume without loss of generality that both x(t) and A(t) are
bounded. Otherwise, for each integer n ≥ 1, define the stopping time

τn = inf{t ≥ 0 : |x(t)| ∨A(t) ≥ n}.

If we can show (7.5) for the stopped processes x(t ∧ τn) and A(t ∧ τn), then
the general case follows upon letting n → ∞. Besides, for convenience, we set
x∗(t) = sup0≤s≤t |x(s)|.
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Case 1 : p = 2. The required (7.5) follows from Theorem 5.21 and the
Doob martingale inequality immediately.

Case 2 : p > 2. It follows from (7.3) that

E|x(t)|p ≤ p(p− 1)
2

E
[
|x∗(t)|p−2A(t)

]
≤ p(p− 1)

2

[
E|x∗(t)|p

] p−2
p
[
E|A(t)|

p
2

] 2
p

, (7.6)

where the Hölder inequality has been used. But, by the Doob martingale in-
equality,

E|x∗(t)|p ≤
( p

p− 1

)p

E|x(t)|p.

Substituting this into (7.6) yields

E|x∗(t)|p ≤
(

p(p+1)

2(p− 1)p−1

) p
2

E|A(t)|
p
2

which is the right-hand-side inequality of (7.5). To show the left-hand-side one,
we set

y(t) =
∫ t

0

|A(s)|
p−2
4 g(s)dB(s).

Then

E|y(t)|2 = E

∫ t

0

|A(s)|
p−2
2 |g(s)|2ds

= E

∫ t

0

|A(s)|
p−2
2 dA(s) =

2
p
E|A(t)|

p
2 . (7.7)

On the other hand, the integration by parts formula yields

x(t)|A(t)|
p−2
4 =

∫ t

0

|A(s)|
p−2
4 dx(s) +

∫ t

0

x(s)d
(
|A(s)|

p−2
4

)
= y(t) +

∫ t

0

x(s)d
(
|A(s)|

p−2
4

)
.

Thus

|y(t)| ≤ |x(t)||A(t)|
p−2
4 +

∫ t

0

|x(s)|d
(
|A(s)|

p−2
4

)
≤ 2x∗(t)|A(t)|

p−2
4 .

Substituting this into (7.7) one sees that

2
p
E|A(t)|

p
2 ≤ 4E

[
|x∗(t)|2|A(t)|

p−2
2

]
≤ 4
[
E|x∗(t)|p

] 2
p
[
E|A(t)|

p
2

] p−2
p

.
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This implies
1

(2p)p/2
E|A(t)|

p
2 ≤ E|x∗(t)|p

as desired.
Case 3 : 0 < p < 2. Fix ε > 0 arbitrarily and define

η(t) =
∫ t

0

[ε + A(s)]
p−2
4 g(s)dB(s) and η∗(t) = sup

0≤s≤t
|η(s)|.

Then

E|η(t)|2 = E

∫ t

0

[ε + A(s)]
p−2
2 dA(s) ≤ 2

p
E[ε + A(t)]

p
2 . (7.8)

On the other hand, the integration by parts formula gives

η(t)[ε + A(t)]
2−p
4 =

∫ t

0

g(s)dB(s) +
∫ t

0

η(s)d
(
[ε + A(s)]

2−p
4

)
= x(t) +

∫ t

0

η(s)d
(
[ε + A(s)]

2−p
4

)
.

Thus

|x(t)| ≤ |η(t)|[ε + A(t)]
2−p
4 +

∫ t

0

|η(s)|d
(
[ε + A(s)]

2−p
4

)
≤ 2η∗(t)[ε + A(t)]

2−p
4 .

Since this holds for all t ≥ 0 and the right-hand side is nondecreasing, we must
have

E|x∗(t)|p ≤ 2pE
[
|η∗(t)|p[ε + A(t)]

p(2−p)
4

]
≤ 2p

[
E|η∗(t)|2

] p
2
[
E[ε + A(t)]

p
2

] 2−p
2

. (7.9)

But, by Doob’s martingale inequality and (7.8),

E|η∗(t)|2 ≤ 4E|η(t)|2 ≤ 8
p
E[ε + A(t)]

p
2 .

Substituting this into (7.9) one sees that

E|x∗(t)|p ≤
(32

p

) p
2
E[ε + A(t)]

p
2 .

Letting ε → 0 we obtain the right-hand-side inequality of (7.5). To show the
left-hand-side one, we write, for any fixed ε > 0,

|A(t)|
p
2 =

(
|A(t)|

p
2 [ε + x∗(t)]

−p(2−p)
2

)
[ε + x∗(t)]

p(2−p)
2 .
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Then, applying Hölder’s inequality, one sees that

E|A(t)|
p
2 ≤

[
E
(
A(t)[ε + x∗(t)]p−2

)] p
2 (

E[ε + x∗(t)]p
) 2−p

2 . (7.10)

Define

ξ(t) =
∫ t

0

[ε + x∗(s)]
p−2
2 g(s)dB(s).

Then

E|ξ(t)|2 = E

∫ t

0

[ε + x∗(s)]p−2dA(s) ≥ E
(
[ε + x∗(t)]p−2A(t)

)
. (7.11)

On the other hand, the integration by parts formula gives

x(t)[ε + x∗(t)]
p−2
2 = ξ(t) +

∫ t

0

x(s)d
(
[ε + x∗(s)]

p−2
2

)
= ξ(t) +

p− 2
2

∫ t

0

x(s)[ε + x∗(s)]
p−4
2 d[ε + x∗(s)].

Thus

|ξ(t)| ≤ x∗(t)[ε + x∗(t)]
p−2
2 +

2− p

2

∫ t

0

x∗(s)[ε + x∗(s)]
p−4
2 d[ε + x∗(s)]

≤ [ε + x∗(t)]
p
2 +

2− p

2

∫ t

0

[ε + x∗(s)]
p−2
2 d[ε + x∗(s)]

≤ 2
p
[ε + x∗(t)]

p
2 .

This, together with (7.11), implies

E
(
[ε + x∗(t)]p−2A(t)

)
≤
(2

p

)2

E[ε + x∗(t)]p.

Substituting this into (7.10) we get that

E|A(t)|
p
2 ≤

(2
p

)p

E[ε + x∗(t)]p.

Finally, letting ε → 0 we have(p

2

)p

E|A(t)|
p
2 ≤ E|x∗(t)|p

as required. The proof is now complete.
The following theorem is known as the exponential martingale inequality

which will play an important role in this book.
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Theorem 7.4 Let g = (g1, · · · , gm) ∈ L2(R+;R1×m), and let T, α, β be any
positive numbers. Then

P

{
sup

0≤t≤T

[∫ t

0

g(s)dB(s)− α

2

∫ t

0

|g(s)|2ds

]
> β

}
≤ e−αβ . (7.12)

Proof. For every integer n ≥ 1, define the stopping time

τn = inf
{

t ≥ 0 :
∣∣∣∫ t

0

g(s)dB(s)
∣∣∣+ ∫ t

0

|g(s)|2ds ≥ n

}
,

and the Itô process

xn(t) = α

∫ t

0

g(s)I[[0,τn]](s)dB(s)− α2

2

∫ t

0

|g(s)|2I[[0,τn]](s)ds.

Clearly, xn(t) is bounded and τn ↑ ∞ a.s. Applying the Itô’s formula to
exp[xn(t)] we obtain that

exp[xn(t)] = 1 +
∫ t

0

exp[xn(s)]dxn(s) +
α2

2

∫ t

0

exp[xn(s)]|g(s)|2I[[0,τn]](s)ds

= 1 + α

∫ t

0

exp[xn(s)]g(s)I[[0,τn]](s)dB(s).

In view of Theorem 5.21, one sees that exp[xn(t)] is a nonnegative martingale
on t ≥ 0 with E

(
exp[xn(t)]

)
= 1. Hence, by Theorem 3.8, we get that

P
{

sup
0≤t≤T

exp[xn(t)] ≥ eαβ
}
≤ e−αβE

(
exp[xn(T )]

)
= e−αβ .

That is,

P

{
sup

0≤t≤T

[∫ t

0

g(s)I[[0,τn]](s)dB(s)− α

2

∫ t

0

|g(s)|2I[[0,τn]](s)ds

]
> β

}
≤ e−αβ .

Now the required (7.12) follows by letting n → ∞ and the proof is therefore
complete.

1.8 GRONWALL-TYPE INEQUALITIES

The integral inequalities of Gronwall type have been widely applied in the
theory of ordinary differential equations and stochastic differential equations to
prove the results on existence, uniqueness, boundedness, comparison, continuous
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dependence, perturbation and stability etc. Naturally, Gronwall-type inequali-
ties will play an important role in this book. For the convenience of the reader,
we establish a number of well-known inequalities of this type in this section.

Theorem 8.1 (Gronwall’s inequality) Let T > 0 and c ≥ 0. Let u(·) be
a Borel measurable bounded nonnegative function on [0, T ], and let v(·) be a
nonnegative integrable function on [0, T ]. If

u(t) ≤ c +
∫ t

0

v(s)u(s)ds for all 0 ≤ t ≤ T, (8.1)

then

u(t) ≤ c exp
(∫ t

0

v(s)ds

)
for all 0 ≤ t ≤ T. (8.2)

Proof. Without loss of generality we may assume that c > 0. Set

z(t) = c +
∫ t

0

v(s)u(s)ds for 0 ≤ t ≤ T.

Then u(t) ≤ z(t). Moreover, by the chain rule of classical calculus, we have

log(z(t)) = log(c) +
∫ t

0

v(s)u(s)
z(s)

ds ≤ log(c) +
∫ t

0

v(s)ds.

This implies

z(t) ≤ c exp
(∫ t

0

v(s)ds

)
for 0 ≤ t ≤ T,

and the required inequality (8.2) follows since u(t) ≤ z(t).

Theorem 8.2 (Bihari’s inequality) Let T > 0 and c > 0. Let K : R+ → R+

be a continuous nondecreasing function such that K(t) > 0 for all t > 0. Let
u(·) be a Borel measurable bounded nonnegative function on [0, T ], and let v(·)
be a nonnegative integrable function on [0, T ]. If

u(t) ≤ c +
∫ t

0

v(s)K(u(s))ds for all 0 ≤ t ≤ T, (8.3)

then

u(t) ≤ G−1

(
G(c) +

∫ t

0

v(s)ds

)
(8.4)

holds for all such t ∈ [0, T ] that

G(c) +
∫ t

0

v(s)ds ∈ Dom(G−1), (8.5)
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where
G(r) =

∫ r

1

ds

K(s)
on r > 0,

and G−1 is the inverse function of G.

Proof. Set

z(t) = c +
∫ t

0

v(s)K(u(s))ds for 0 ≤ t ≤ T.

Then u(t) ≤ z(t). By the chain rule of classical calculus, one can derive that

G(z(t)) = G(c) +
∫ t

0

v(s)K(u(s))
K(z(s))

ds ≤ G(c) +
∫ t

0

v(s)ds (8.6)

for all t ∈ [0, T ]. Hence, for t ∈ [0, T ] satisfying (8.5) one sees from (8.6) that

z(t) ≤ G−1

(
G(c) +

∫ t

0

v(s)ds

)
,

and the desired inequality (8.4) follows since u(t) ≤ z(t).

Theorem 8.3 Let T > 0, α ∈ [0, 1) and c > 0. Let u(·) be a Borel measurable
bounded nonnegative function on [0, T ], and let v(·) be a nonnegative integrable
function on [0, T ]. If

u(t) ≤ c +
∫ t

0

v(s)[u(s)]αds for all 0 ≤ t ≤ T, (8.7)

then

u(t) ≤
(

c1−α + (1− α)
∫ t

0

v(s)ds

) 1
1−α

(8.8)

holds for all t ∈ [0, T ].

Proof. Without loss of generality, we may assume c > 0. Set

z(t) = c +
∫ t

0

v(s)[u(s)]αds for 0 ≤ t ≤ T.

Then u(t) ≤ z(t) and z(t) > 0. By the fundamental differential formula, one can
show that

[z(t)]1−α = c1−α + (1− α)
∫ t

0

v(s)[u(s)]α

[z(s)]α
ds

≤ c1−α + (1− α)
∫ t

0

v(s)ds

for all t ∈ [0, T ], and the required inequality (8.8) follows immediately.
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Stochastic Di�erential Equations

2.1 INTRODUCTION

In section 1.1 we introduced, as an example, the simple stochastic population
growth model

N(t) = N0 +
∫ t

0

r(s)N(s)ds +
∫ t

0

σ(s)N(s)dB(s),

or, in differential form,

dN(t) = r(t)N(t)dt + σ(t)N(t)dB(t) on t ≥ 0 (1.1)

with initial value N(0) = N0. In this chapter, we shall turn our attention to the
finding of a solution to the equation. In general, we shall investigate the solution
to a non-linear stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t ∈ [t0, T ] (1.2)

with initial value x(t0) = x0, where 0 ≤ t0 < T < ∞. The questions are:
· What is the solution?
· Are there the existence-and-uniqueness theorems for such a solution?
· What are the properties of the solution?
· How can the solution be obtained in practice?

In this chapter, we shall answer these questions one by one. Besides, as an impor-
tant application of stochastic differential equations, we shall establish the well-
known Feynman–Kac formula. The Feynman–Kac formula gives the stochastic

47



48 Stochastic Differential Equations [Ch.2

representation for the solution to a linear parabolic partial differential equation
in terms of the solution to the corresponding stochastic differential equation.

2.2 STOCHASTIC DIFFERENTIAL EQUATIONS

Let (Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions. Throughout this chapter, unless otherwise spec-
ified, we let B(t) = (B1(t), · · · , Bm(t))T , t ≥ 0 be an m-dimensional Brownian
motion defined on the space. Let 0 ≤ t0 < T < ∞. Let x0 be an Ft0-measurable
Rd-valued random variable such that E|x0|2 < ∞. Let f : Rd× [t0, T ] → Rd and
g : Rd × [t0, T ] → Rd×m be both Borel measurable. Consider the d-dimensional
stochastic differential equation of Itô type

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t0 ≤ t ≤ T (2.1)

with initial value x(t0) = x0. By the definition of stochastic differential, this
equation is equivalent to the following stochastic integral equation:

x(t) = x0 +
∫ t

t0

f(x(s), s)ds +
∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T. (2.2)

Let us first give the definition of the solution.

Definition 2.1 An Rd-valued stochastic process {x(t)}t0≤t≤T is called a solution
of equation (2.1) if it has the following properties:

(i) {x(t)} is continuous and Ft-adapted;
(ii) {f(x(t), t)} ∈ L1([t0, T ];Rd) and {g(x(t), t)} ∈ L2([t0, T ];Rd×m);
(iii) equation (2.2) holds for every t ∈ [t0, T ] with probability 1.

A solution {x(t)} is said to be unique if any other solution {x̄(t)} is indistin-
guishable from {x(t)}, that is

P{x(t) = x̄(t) for all t0 ≤ t ≤ T} = 1.

Remark 2.2 (a) Denote the solution of equation (2.1) by x(t; t0, x0). Note
from equation (2.2) that for any s ∈ [t0, T ],

x(t) = x(s) +
∫ t

s

f(x(r), r)dr +
∫ t

s

g(x(r), r)dB(r) on s ≤ t ≤ T. (2.3)

But, this is a stochastic differential equation on [s, T ] with initial value x(s) =
x(s; t0, x0), whose solution is denoted by x(t; s, x(s; t0, x0)). Therefore, we see
that the solution of equation (2.1) satisfies the following flow or semigroup prop-
erty

x(t; t0, x0) = x(t; s, x(s; t0, x0)), t0 ≤ s ≤ t ≤ T.
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(b) The coefficients f and g can depend on ω in a general manner as long
as they are adapted. For further details, please see Gihman & Skorohod (1972).

(c) In this book we require the initial value x0 be L2, but in general it
is enough for x0 to be a random variable as long as it is Ft0-measurable. For
further details, please see Gihman & Skorohod (1972).

We shall now give some examples of stochastic differential equations.

Example 2.3 Let B(t), t ≥ 0 be a one-dimensional Brownian motion. Define
the two-dimensional stochastic process

x(t) = (x1(t), x2(t))T = (cos(B(t)), sin(B(t)))T on t ≥ 0. (2.4)

The process x(t) is called Brownian motion on the unit circle. We now show
that x(t) satisfies a linear stochastic differential equation. By Itô’s formula,

dx1(t) = − sin(B(t))dB(t)− 1
2

cos(B(t))dt = −1
2
x1(t)dt− x2(t)dB(t),

dx2(t) = cos(B(t))dB(t)− 1
2

sin(B(t))dt = −1
2
x2(t)dt + x1(t)dB(t).

That is, in matrix notation,

dx(t) = −1
2
x(t)dt + Kx(t)dB(t), where K =

(
0 −1
1 0

)
. (2.5)

Example 2.4 The charge Q(t) at time t at a fixed point in an electrical circuit
satisfies the second order differential equation

LQ̈(t) + RQ̇(t) +
1
C

Q(t) = F (t), (2.6)

where L is the inductance, R the resistance, C the capacitance and F (t) the po-
tential source. Suppose that the potential source is subject to the environmental
noise and is described by F (t) = G(t) + αḂ(t), where Ḃ(t) is a 1-dimensional
white noise (i.e. B(t) is a Brownian motion) and α is the intensity of the noise.
Then equation (2.6) becomes

LQ̈(t) + RQ̇(t) +
1
C

Q(t) = G(t) + αḂ(t). (2.7)

Introduce the 2-dimensional process x(t) = (x1(t), x2(t))T = (Q(t), Q̇(t))T .
Then equation (2.7) can be expressed as an Itô equation dx1(t) = x2(t)dt,

dx2(t) =
1
L

(
− 1

C
x1(t)−Rx2(t) + G(t)

)
dt +

α

L
dB(t).
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That is,
dx(t) = [Ax(t) + H(t)]dt + KdB(t), (2.8)

where

A =
(

0 1
−1/CL −R/L

)
, H(t) =

(
0

G(t)/L

)
, K =

(
0

α/L

)
.

Example 2.5 More generally, consider a dth-order differential equation with
white noise of the form

y(d)(t) = F (y(t), · · · , y(d−1)(t), t) + G(y(t), · · · , y(d−1)(t), t)Ḃ(t), (2.9)

where F : Rd ×R+ → R, G : Rd ×R+ → R1×m, and Ḃ(t) is an m-dimensional
white noise, i.e. B(t) is an m-dimensional Brownian motion. Introducing the
Rd-valued stochastic process x(t) = (x1(t), · · · , xd(t))T = (y(t), · · · , y(d−1)(t))T ,
we can then convert equation (2.9) into a d-dimensional Itô equation

dx(t) =


x2(t)

...
xd(t)

F (x(t), t)

 dt +


0
...
0

G(x(t), t)

 dB(t). (2.10)

Example 2.6 If g(x, t) ≡ 0, equation (2.1) becomes the ordinary differential
equation

ẋ(t) = f(x(t), t) on t ∈ [t0, T ] (2.11)

with initial value x(t0) = x0. In this case, the random influence can only show up
in the initial value x0. As a special case, consider the one-dimensional equation

ẋ(t) = 3[x(t)]2/3 on t ∈ [t0, T ] (2.12)

with initial value x(t0) = 1A, where A ∈ Ft0 . It is easy to verify that for any
0 < α < T − t0, the stochastic process

x(t) = x(t, ω) =

 (t− t0 + 1)3 for t0 ≤ t ≤ T, ω ∈ A,
0 for t0 ≤ t ≤ t0 + α, ω /∈ A,
(t− t0 − α)3 for t0 + α < t ≤ T, ω /∈ A

is a solution to equation (2.12). In other words, equation (2.12) has infinitely
many solutions. As another special case, consider the one-dimensional equation

ẋ(t) = [x(t)]2 on t ∈ [t0, T ] (2.13)

with initial value x(t0) = x0, which is a random variable taking values larger
than 1/[T−t0]. It is easy to verify that equation (2.13) has the (unique) solution

x(t) =
[

1
x0

− (t− t0)
]−1

only on t0 ≤ t < t0 +
1
x0

(< T ),
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but there is no solution defined for all t ∈ [t0, T ] in this case.

Example 2.7 Let B(t) be a one-dimensional Brownian motion. Girsanov
(1962) has shown that the one-dimensional Itô equation

x(t) =
∫ t

t0

|x(s)|αdB(s)

has a unique solution when α ≥ 1/2, but it has infinitely many solutions when
0 < α < 1/2.

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS

Examples 2.6 and 2.7 show that an Itô equation may not have a unique
solution defined on the whole interval [t0, T ]. Let us now turn to find the con-
ditions that guarantee the existence and uniqueness of the solution to equation
(2.1).

Theorem 3.1 Assume that there exist two positive constants K̄ and K such
that
(i) (Lipschitz condition) for all x, y ∈ Rd and t ∈ [t0, T ]

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K̄|x− y|2; (3.1)

(ii) (Linear growth condition) for all (x, t) ∈ Rd × [t0, T ]

|f(x, t)|2
∨
|g(x, t)|2 ≤ K(1 + |x|2). (3.2)

Then there exists a unique solution x(t) to equation (2.1) and the solution belongs
to M2([t0, T ];Rd).

We first prepare a lemma.

Lemma 3.2 Assume that the linear growth condition (3.2) holds. If x(t) is a
solution of equation (2.1), then

E
(

sup
t0≤t≤T

|x(t)|2
)
≤ (1 + 3E|x0|2)e3K(T−t0)(T−t0+4). (3.3)

In particular, x(t) belongs to M2([t0, T ];Rd).

Proof. For every integer n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t)| ≥ n}.
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Clearly, τn ↑ T a.s. Set xn(t) = x(t ∧ τn) for t ∈ [t0, T ]. Then xn(t) satisfies the
equation

xn(t) = x0 +
∫ t

t0

f(xn(s), s)I[[t0,τn]](s)ds +
∫ t

t0

g(xn(s), s)I[[t0,τn]](s)dB(s).

Using the elementary inequality |a + b + c|2 ≤ 3(|a|2 + |b|2 + |c|2), the Hölder
inequality and condition (3.2), one can show that

|xn(t)|2 ≤ 3|x0|2 + 3K(t− t0)
∫ t

t0

(1 + |xn(s)|2)ds

+ 3
∣∣∣∣∫ t

t0

g(xn(s), s)I[[t0,τn]](s)dB(s)
∣∣∣∣2.

Hence, by Theorem 1.7.2 and condition (3.2) one can further show that

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ 3E|x0|2 + 3K(T − t0)

∫ t

t0

(1 + E|xn(s)|2)ds

+ 12E

∫ t

t0

|g(xn(s), s)|2I[[t0,τn]](s)ds

≤ 3E|x0|2 + 3K(T − t0 + 4)
∫ t

t0

(1 + E|xn(s)|2)ds.

Consequently

1 + E
(

sup
t0≤s≤t

|xn(s)|2
)

≤ 1 + 3E|x0|2 + 3K(T − t0 + 4)
∫ t

t0

[
1 + E

(
sup

t0≤r≤s
|xn(r)|2

)]
ds.

Now the Gronwall inequality (i.e. Theorem 1.8.1) yields that

1 + E
(

sup
t0≤t≤T

|xn(t)|2
)
≤ (1 + 3E|x0|2)e3K(T−t0)(T−t0+4).

Thus
E

(
sup

t0≤t≤τn

|x(t)|2
)
≤ (1 + 3E|x0|2)e3K(T−t0)(T−t0+4).

Finally the required inequality (3.3) follows by letting n →∞.

Proof of Theorem 3.1. Uniqueness. Let x(t) and x̄(t) be two solutions of equation
(2.1). By Lemma 3.2, both of them belong to M2([t0, T ];Rd). Note that

x(t)− x̄(t) =
∫ t

t0

[f(x(s), s)− f(x̄(s), s)]ds +
∫ t

t0

[g(x(s), s)− g(x̄(s), s)]dB(s).
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Using the Hölder inequality, Theorem 1.7.2 and the Lipschitz condition (3.1) one
can show in the same way as the proof of Lemma 3.2 that

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 2K̄(T + 4)

∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− x̄(r)|2
)
ds.

The Gronwall inequality then yields that

E
(

sup
t0≤t≤T

|x(t)− x̄(t)|2
)

= 0.

Hence, x(t) = x̄(t) for all t0 ≤ t ≤ T almost surely. The uniqueness has been
proved.

Existence. Set x0(t) ≡ x0, and for n = 1, 2, · · ·, define the Picard iterations

xn(t) = x0 +
∫ t

t0

f(xn−1(s), s)ds +
∫ t

t0

g(xn−1(s), s)dB(s) (3.4)

for t ∈ [t0, T ]. Obviously, x0(·) ∈M2([t0, T ];Rd). Moreover, it is easy to see by
induction that xn(·) ∈M2([t0, T ];Rd), because we have from (3.4) that

E|xn(t)|2 ≤ c1 + 3K(T + 1)
∫ t

t0

E|xn−1(s)|2ds, (3.5)

where c1 = 3E|x0|2 + 3KT (T + 1). It also follows from (3.5) that for any k ≥ 1,

max
1≤n≤k

E|xn(t)|2 ≤ c1 + 3K(T + 1)
∫ t

t0

max
1≤n≤k

E|xn−1(s)|2ds

≤ c1 + 3K(T + 1)
∫ t

t0

(
E|x0|2 + max

1≤n≤k
E|xn(s)|2

)
ds

≤ c2 + 3K(T + 1)
∫ t

t0

max
1≤n≤k

E|xn(s)|2ds,

where c2 = c1 + 3KT (T + 1)E|x0|2 . The Gronwall inequality implies

max
1≤n≤k

E|xn(t)|2 ≤ c2e
3KT (T+1).

Since k is arbitrary, we must have

E|xn(t)|2 ≤ c2e
3KT (T+1) for all t0 ≤ t ≤ T, n ≥ 1. (3.6)

Next, we note that

|x1(t)− x0(t)|2 = |x1(t)− x0|2

≤ 2
∣∣∣∣∫ t

t0

f(x0, s)ds

∣∣∣∣2 + 2
∣∣∣∣∫ t

t0

g(x0, s)dB(s)
∣∣∣∣2.
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Taking the expectation and using (3.2), we get

E|x1(t)− x0(t)|2

≤ 2K(t− t0)2(1 + E|x0|2) + 2K(t− t0)(1 + E|x0|2) ≤ C, (3.7)

where C = 2K(T − t0 + 1)(T − t0)(1 + E|x0|2). We now claim that for n ≥ 0,

E|xn+1(t)− xn(t)|2 ≤ C[M(t− t0)]n

n!
for t0 ≤ t ≤ T, (3.8)

where M = 2K̄(T − t0 + 1). We shall show this by induction. In view of (3.7)
we see that (3.8) holds when n = 0. Under the inductive assumption that (3.8)
holds for some n ≥ 0, we shall show that (3.8) still holds for n + 1. Note that

|xn+2(t)− xn+1(t)|2 ≤ 2
∣∣∣∣∫ t

t0

[f(xn+1(s), s)− f(xn(s), s)]ds

∣∣∣∣2
+ 2

∣∣∣∣∫ t

t0

[g(xn+1(s), s)− g(xn(s), s)]dB(s)
∣∣∣∣2. (3.9)

Taking the expectation and using (3.1) as well as the inductive assumption, we
derive that

E|xn+2(t)− xn+1(t)|2 ≤ 2K̄(t− t0 + 1)E
∫ t

t0

|xn+1(s)− xn(s)|2ds

≤ M

∫ t

t0

E|xn+1(s)− xn(s)|2ds

≤ M

∫ t

t0

C[M(s− t0)]n

n!
ds =

C[M(t− t0)]n+1

(n + 1)!
.

That is, (3.8) holds for n + 1. Hence, by induction, (3.8) holds for all n ≥ 0.
Furthermore, replacing n in (3.9) with n− 1 we see that

sup
t0≤t≤T

|xn+1(t)− xn(t)|2 ≤ 2K̄(T − t0)
∫ T

t0

|xn(s)− xn−1(s)|2ds

+2 sup
t0≤t≤T

∣∣∣∣∫ T

t0

[g(xn(s), s)− g(xn−1(s), s)]dB(s)
∣∣∣∣2.

Taking the expectation and using Theorem 1.7.2 and (3.8), we find that

E

(
sup

t0≤t≤T
|xn+1(t)− xn(t)|2

)
≤ 2K̄(T − t0 + 4)

∫ T

t0

E|xn(s)− xn−1(s)|2ds

≤ 4M

∫ T

t0

C[M(s− t0)]n−1

(n− 1)!
ds =

4C[M(T − t0)]n

n!
.
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Hence

P

{
sup

t0≤t≤T
|xn+1(t)− xn(t)| > 1

2n

}
≤ 4C[4M(T − t0)]n

n!
.

Since
∑∞

n=0 4C[4M(T − t0)]n/n! < ∞, the Borel–Cantelli lemma yields that for
almost all ω ∈ Ω there exists a positive integer n0 = n0(ω) such that

sup
t0≤t≤T

|xn+1(t)− xn(t)| ≤ 1
2n

whenever n ≥ n0.

It follows that, with probability 1, the partial sums

x0(t) +
n−1∑
i=0

[xi+1(t)− xi(t)] = xn(t)

are convergent uniformly in t ∈ [0, T ]. Denote the limit by x(t). Clearly, x(t)
is continuous and Ft-adapted. On the other hand, one sees from (3.8) that for
every t, {xn(t)}n≥1 is a Cauchy sequence in L2 as well. Hence we also have
xn(t) → x(t) in L2. Letting n →∞ in (3.6) gives

E|x(t)|2 ≤ c2e
3KT (T+1) for all t0 ≤ t ≤ T.

Therefore, x(·) ∈M2([t0, T ];Rd). It remains to show that x(t) satisfies equation
(2.2). Note that

E

∣∣∣∣∫ t

t0

f(xn(s), s)ds−
∫ t

t0

f(x(s), s)ds

∣∣∣∣2
+ E

∣∣∣∣∫ t

t0

g(xn(s), s)dB(s)−
∫ t

t0

g(x(s), s)dB(s)
∣∣∣∣2

≤ K̄(T − t0 + 1)
∫ T

t0

E|xn(s)− x(s)|2ds → 0 as n →∞.

Hence we can let n →∞ in (3.4) to obtain that

x(t) = x0 +
∫ t

t0

f(x(s), s)ds +
∫ t

t0

g(x(s), s)dB(s) on t0 ≤ t ≤ T

as desired. The proof is now complete.
In the proof above we have shown that the Picard iterations xn(t) converge

to the unique solution x(t) of equation (2.1). The following theorem gives an
estimate on how fast the convergence is.

Theorem 3.3 Let the assumptions of Theorem 3.1 hold. Let x(t) be the unique
solution of equation (2.1) and xn(t) be the Picard iterations defined by (3.4).
Then

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ 8C[M(T − t0)]n

n!
e8M(T−t0) (3.10)



56 Stochastic Differential Equations [Ch.2

for all n ≥ 1, where C and M are the same as defined in the proof of Theorem
3.1, that is C = 2K(T − t0 + 1)(T − t0)(1 + E|x0|2) and M = 2K̄(T − t0 + 1).

Proof. From

xn(t)− x(t) =
∫ t

t0

[f(xn−1(s), s)− f(x(s), s)]ds

+
∫ t

t0

[g(xn−1(s), s)− g(x(s), s)]dB(s),

we can derive that

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)
≤ 2K̄(T − t0 + 4)

∫ t

t0

E|xn−1(s)− x(s)|2ds

≤ 8M

∫ t

t0

E|xn(s)− xn−1(s)|2ds + 8M

∫ t

t0

E|xn(s)− x(s)|2ds.

Substituting (3.8) into this yields that

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)
≤ 8M

∫ T

t0

C[M(s− t0)]n−1

(n− 1)!
ds + 8M

∫ t

t0

E|xn(s)− x(s)|2ds

≤ 8C[M(T − t0)]n

n!
+ 8M

∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)− x(r)|2

)
ds.

Consequently, the required inequality (3.10) follows by applying the Gronwall
inequality. The proof is complete.

This theorem shows that one can use the Picard iteration procedure to
obtain the approximate solutions of equation (2.1), and (3.10) gives the esti-
mate for the error of the approximation. We shall discuss other approximation
procedures later.

The Lipschitz condition (3.1) means that the coefficients f(x, t) and g(x, t)
do not change faster than a linear function of x as change in x. This implies
in particular the continuity of f(x, t) and g(x, t) in x for all t ∈ [t0, T ]. Thus,
functions that are discontinuous with respect to x are excluded as the coef-
ficients. Besides, functions like sinx2 do not satisfy the Lipschitz condition.
These indicate that the Lipschitz condition is too restrictive. The next theorem
is a generalization of Theorem 3.1 in which this (uniform) Lipschitz condition is
replaced by the local Lipschitz condition.

Theorem 3.4 Assume that the linear growth condition (3.2) holds, but the
Lipschitz condition (3.1) is replaced with the following local Lipschitz condition:
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For every integer n ≥ 1, there exists a positive constant Kn such that, for all
t ∈ [t0, T ] and all x, y ∈ Rd with |x| ∨ |y| ≤ n,

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ Kn|x− y|2. (3.11)

Then there exists a unique solution x(t) to equation (2.1) in M2([t0, T ];Rd).

Proof. This theorem is proved by a truncation procedure. We only outline the
proof but leave the details to the reader. For each n ≥ 1, define the truncation
function

fn(x, t) =
{

f(x, t) if |x| ≤ n,
f(nx/|x|, t) if |x| > n,

and gn(x, t) similarly. Then fn and gn satisfy the Lipschitz condition (3.1) and
the linear growth condition (3.2). Hence by Theorem 3.1, there is a unique
solution xn(·) in M2([t0, T ];Rd) to the equation

xn(t) = x0 +
∫ t

t0

fn(xn(s), s)dt +
∫ t

t0

gn(xn(s), s)dB(s), t ∈ [t0, T ]. (3.12)

Define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |xn(t)| ≥ n}.

We can show that
xn(t) = xn+1(t) if t0 ≤ t ≤ τn. (3.13)

This implies that τn is increasing. We can then use the linear growth condition
to show that for almost all ω ∈ Ω, there exists an integer n0 = n0(ω) such that
τn = T whenever n ≥ n0. Now define x(t) by

x(t) = xn0(t), t ∈ [t0, T ].

By (3.13), x(t ∧ τn) = xn(t ∧ τn), and it therefore follows from (3.12) that

x(t ∧ τn) = x0 +
∫ t∧τn

t0

fn(x(s), s)ds +
∫ t∧τn

t0

gn(x(s), s)dB(s)

= x0 +
∫ t∧τn

t0

f(x(s), s)ds +
∫ t∧τn

t0

g(x(s), s)dB(s).

Letting n →∞ we see that x(t) is a solution of equation (2.1), which, by Lemma
3.2, belongs to M2([t0, T ];Rd). The uniqueness can be proved via a stopping
procedure.

The local Lipschitz condition allows us to include many functions as the
coefficients f(x, t) and g(x, t) e.g. functions that have continuous partial deriva-
tives of first order with respect to x on Rd × [t0, T ]. However, the linear growth
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condition still excludes some important functions like −|x|2x as the coefficients.
The following result improves the situation.

Theorem 3.5 Assume that the local Lipschitz condition (3.11) holds, but the
linear growth condition (3.2) is replaced with the following monotone condition:
There exists a positive constant K such that for all (x, t) ∈ Rd × [t0, T ]

xT f(x, t) +
1
2
|g(x, t)|2 ≤ K(1 + |x|2). (3.14)

Then there exists a unique solution x(t) to equation (2.1) in M2([t0, T ];Rd).

This theorem can be proved in a similar way as Theorem 3.4—the local
Lipschitz condition guarantees that the solution exists in [t0, τ∞], where τ∞ =
limn→∞ τn, but the monotone condition instead of the linear growth condition
guarantees that τ∞ = T i.e. the solution exists on the whole interval [t0, T ].
We leave the details to the reader. It should be stressed that if the linear
growth condition (3.2) holds then the monotone condition (3.14) is satisfied, but
conversely not. For example, consider the one-dimensional stochastic differential
equation

dx(t) = [x(t)− x3(t)]dt + x2(t)dB(t) on t ∈ [t0, T ]. (3.15)

Here B(t) is a one-dimensional Brownian motion. Clearly, the local Lipschitz
condition is satisfied but the linear growth condition is not. On the other hand,
note that

x[x− x3] +
1
2
x4 ≤ x2 < 1 + x2.

That is, the monotone condition is fulfilled. Hence Theorem 3.4 guarantees that
equation (3.15) has a unique solution. An even more general condition than
the monotone one is the Has’minskii condition which is described by using a
Lyapunov-like function. For the details please see Has’minskii (1980).

In this book we often discuss a stochastic differential equation on [t0,∞),
that is

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t ∈ [t0,∞) (3.16)

with initial value x(t0) = x0. If the assumptions of the existence-and-uniqueness
theorem hold on every finite subinterval [t0, T ] of [t0,∞), then equation (3.16)
has a unique solution x(t) on the entire interval [t0,∞). Such a solution is called
a global solution. For the convenience of the reader, we state a theorem.

Theorem 3.6 Assume that for every real number T > t0 and integer n ≥ 1,
there exists a positive constant KT,n such that for all t ∈ [t0, T ] and all x, y ∈ Rd

with |x| ∨ |y| ≤ n,

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ KT,n|x− y|2.
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Assume also that for every T > t0, there exists a positive constant KT such that
for all (x, t) ∈ Rd × [t0, T ],

xT f(x, t) +
1
2
|g(x, t)|2 ≤ KT (1 + |x|2).

Then there exists a unique global solution x(t) to equation (3.16) and the solution
belongs to M2([t0,∞);Rd).

2.4 Lp-ESTIMATES

In this section, we assume that x(t), t0 ≤ t ≤ T is the unique solution of
equation (2.1) with initial value x(t0) = x0, and we shall investigate the pth
moment of the solution.

Theorem 4.1 Let p ≥ 2 and x0 ∈ Lp(Ω; Rd). Assume that there exists a
constant α > 0 such that for all (x, t) ∈ Rd × [t0, T ],

xT f(x, t) +
p− 1

2
|g(x, t)|2 ≤ α(1 + |x|2). (4.1)

Then
E|x(t)|p ≤ 2

p−2
2 (1 + E|x0|p)epα(t−t0) for all t ∈ [t0, T ]. (4.2)

Proof. By Itô’s formula and condition (4.1) we can derive that for t ∈ [t0, T ],[
1 + |x(t)|2

] p
2 =

[
1 + |x0|2

] p
2 + p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)f(x(s), s)ds

+
p

2

∫ t

t0

[
1 + |x(s)|2

] p−2
2 |g(x(s), s)|2ds

+
p(p− 2)

2

∫ t

t0

[
1 + |x(s)|2

] p−4
2 |xT (s)g(x(s), s)|2ds

+ p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)g(x(s), s)dB(s)

≤ 2
p−2
2 (1 + |x0|p) + p

∫ t

t0

[
1 + |x(s)|2

] p−2
2

×
(

xT (s)f(x(s), s) +
p− 1

2
|g(x(s), s)|2

)
ds

+ p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)g(x(s), s)dB(s)

≤ 2
p−2
2 (1 + |x0|p) + pα

∫ t

t0

[
1 + |x(s)|2

] p
2 ds

+ p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)g(x(s), s)dB(s). (4.3)
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For every integer n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |x(t)| ≥ n}.

Clearly, τn ↑ T a.s. Moreover, it follows from (4.3) and the property of Itô’s
integral that

E
([

1 + |x(t ∧ τn)|2
] p

2
)

≤ 2
p−2
2 (1 + E|x0|p) + pαE

∫ t∧τn

t0

[
1 + |x(s)|2

] p
2 ds

≤ 2
p−2
2 (1 + E|x0|p) + pα

∫ t

t0

E
([

1 + |x(s ∧ τn)|2
] p

2
)
ds

The Gronwall inequality yields

E
([

1 + |x(t ∧ τn)|2
] p

2
)
≤ 2

p−2
2 (1 + E|x0|p)epα(t−t0).

Letting n →∞ yields

E
([

1 + |x(t)|2
] p

2
)
≤ 2

p−2
2 (1 + E|x0|p)epα(t−t0), (4.4)

and the desired inequality (4.2) follows.
We now verify that if the linear growth condition (3.2) is fulfilled, then (4.1)

is satisfied with α =
√

K + K(p− 1)/2. In fact, using (3.2) and the elementary
inequality 2ab ≤ a2 + b2 one can derive that for any ε > 0,

2xT f(x, t) ≤ 2|x||f(x, t)| = 2(
√

ε|x|)(|f(x, t)/
√

ε)

≤ ε|x|2 +
1
ε
|f(x, t)|2 ≤ ε|x|2 +

K

ε
(1 + |x|2).

Letting ε =
√

K yields

xT f(x, t) ≤
√

K(1 + |x|2).

Consequently

xT f(x, t) +
p− 1

2
|g(x, t)|2 ≤

[√
K +

K(p− 1)
2

]
(1 + |x|2).

We therefore obtain the following useful corollary.

Corollary 4.2 Let p ≥ 2 and x0 ∈ Lp(Ω; Rd). Assume that the linear growth
condition (3.2) holds. Then inequality (4.2) holds with α =

√
K + K(p− 1)/2.

We now apply these results to show one of the important properties of the
solution.
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Theorem 4.3 Let p ≥ 2 and x0 ∈ Lp(Ω; Rd). Assume that the linear growth
condition (3.2) holds. Then

E|x(t)− x(s)|p ≤ C(t− s)
p
2 for all t0 ≤ s < t ≤ T, (4.5)

where

C = 2p−2(1 + E|x0|p)epα(T−t0)
(
[2(T − t0)]

p
2 + [p(p− 1)]

p
2

)
and α =

√
K + K(p − 1)/2. In particular, the pth moment of the solution is

continuous on [t0, T ].

Proof. By the elementary inequality |a + b|p ≤ 2p−1(|a|p + |b|p), it is easy to
see that

E|x(t)− x(s)|p ≤ 2p−1E

∣∣∣∣∫ t

s

f(x(r), r)dr

∣∣∣∣p + 2p−1E

∣∣∣∣∫ t

s

g(x(r), r)dB(r)
∣∣∣∣p.

Using the Hölder inequality, Theorem 1.7.1 and the linear growth condition, one
can then derive that

E|x(t)− x(s)|p ≤ [2(t− s)]p−1E

∫ t

s

|f(x(r), r)|pdr

+
1
2
[2p(p− 1)]

p
2 (t− s)

p−2
2 E

∫ t

s

|g(x(r), r)|pdr

≤ c1(t− s)
p−2
2

∫ t

s

E(1 + |x(r)|2)
p
2 ,

where c1 = 2
p−2
2 K

p
2

(
[2(T − t0)]

p
2 + [p(p− 1)]

p
2

)
. Applying (4.4) one sees that

E|x(t)− x(s)|p ≤ c1(t− s)
p−2
2

∫ t

s

2
p−2
2 (1 + E|x0|p)epα(r−t0)dr

≤ c12
p−2
2 (1 + E|x0|p)epα(T−t0)(t− s)

p
2 ,

which is the required inequality (4.5).

Theorem 4.4 Let p ≥ 2 and x0 ∈ Lp(Ω; Rd). Assume that the linear growth
condition (3.2) holds. Then

E

(
sup

t0≤s≤t
|x(s)|p

)
≤ (1 + 3p−1E|x0|p)eβ(t−t0) (4.6)

for all t0 ≤ t ≤ T , where

β =
1
6
(18K)

p
2 (T − t0)

p−2
2

[
(T − t0)

p
2 +

( p3

2(p− 1)

) p
2
]
.
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Proof. Using the Hölder inequality, Theorem 1.7.2 and condition (3.2) one can
derive that

E

(
sup

t0≤s≤t
|x(s)|p

)
≤ 3p−1E|x0|p + 3p−1E

(∫ t

t0

|f(x(s), s)|ds

)p

+ 3p−1E

(
sup

t0≤s≤t

∣∣∣∫ s

t0

g(x(r), r)dB(r)
∣∣∣)p

≤ 3p−1E|x0|p + [3(t− t0)]p−1E

∫ t

t0

|f(x(s), s)|pds

+ 3p−1
( p3

2(p− 1)

) p
2
(t− t0)

p−2
2 E

∫ t

t0

|g(x(s), s)|pds

≤ 3p−1E|x0|p + β

∫ t

t0

(1 + E|x(s)|p)ds.

Hence

1 + E

(
sup

t0≤s≤t
|x(s)|p

)
≤ 1 + 3p−1E|x0|p + β

∫ t

t0

[
1 + E

(
sup

t0≤r≤s
|x(r)|p

)]
ds.

By the Gronwall inequality one sees that

1 + E

(
sup

t0≤s≤t
|x(s)|p

)
≤ (1 + 3p−1E|x0|p)eβ(t−t0),

and the required inequality (4.6) follows.
Let us now turn to consider the case of 0 < p < 2. This is rather easy if we

note that the Hölder inequality implies

E|x(t)|p ≤
[
E|x(t)|2

] p
2 . (4.7)

In other words, the estimate for E|x(t)|p can be done via the estimate for the
second moment. For example, we have the following corollaries.

Corollary 4.5 Let 0 < p < 2 and x0 ∈ L2(Ω; Rd). Assume that there exists a
constant α > 0 such that for all (x, t) ∈ Rd × [t0, T ],

xT f(x, t) +
1
2
|g(x, t)|2 ≤ α(1 + |x|2). (4.8)

Then
E|x(t)|p ≤ (1 + E|x0|2)

p
2 epα(t−t0) for all t ∈ [t0, T ]. (4.9)
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Corollary 4.6 Let 0 < p < 2 and x0 ∈ L2(Ω; Rd). Assume that the linear
growth condition (3.2) holds. Then

E|x(t)− x(s)|p ≤ C
p
2 (t− s)

p
2 for all t0 ≤ s < t ≤ T, (4.10)

where
C = 2(1 + E|x0|2)(T − t0 + 1) exp

[
(2
√

K + K)(T − t0)
]
.

In particular, the pth moment of the solution is continuous on [t0, T ].

2.5 ALMOST SURELY ASYMPTOTIC ESTIMATES

Let us now consider the d-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t ∈ [t0,∞) (5.1)

with initial value x(t0) = x0 ∈ L2(Ω; Rd). Assume that the equation has a
unique global solution x(t) on [t0,∞). Besides, we shall impose the monotone
condition: There is a positive constant α such that, for all (x, t) ∈ Rd × [t0,∞),

xT f(x, t) +
1
2
|g(x, t)|2 ≤ α(1 + |x|2). (5.2)

Let 0 < p ≤ 2. In view of Theorem 4.1 and Corollary 4.5 , we know that the
pth moment of the solution satisfies

E|x(t)|p ≤ (1 + E|x0|2)
p
2 epα(t−t0) for all t ≥ t0.

This means that the pth moment will grow at most exponentially with exponent
pα. This can also be expressed as

lim sup
t→∞

1
t

log(E|x(t)|p) ≤ pα. (5.3)

The left-hand side of (5.3) is called the pth moment Lyapunov exponent (for p > 2
too), and (5.3) shows that the pth moment Lyapunov exponent should not be
greater than pα. In this section, we shall establish the asymptotic estimate for
the solution almost surely. More precisely, we shall estimate

lim sup
t→∞

1
t

log |x(t)| (5.4)

almost surely, which is called the sample Lyapunov exponent , or simply Lyapunov
exponent .

Theorem 5.1 Under the monotone condition (5.2), the sample Lyapunov ex-
ponent of the solution of equation (5.1) should not be greater than α, that is

lim sup
t→∞

1
t

log |x(t)| ≤ α a.s. (5.5)
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Proof. By Itô’s formula and the monotone condition (5.2),

log(1 + |x(t)|2) = log(1 + |x0|2)

+
∫ t

t0

1
1 + |x(s)|2

(
2xT (s)f(x(s), s) + |g(x(s), s)|2

)
ds

− 2
∫ t

t0

|xT (s)g(x(s), s)|2

[1 + |x(s)|2]2
ds + M(t)

≤ log(1 + |x0|2) + 2α(t− t0)− 2
∫ t

t0

|xT (s)g(x(s), s)|2

[1 + |x(s)|2]2
ds + M(t), (5.6)

where

M(t) = 2
∫ t

t0

xT (s)g(x(s), s)
1 + |x(s)|2

dB(s). (5.7)

On the other hand, for every integer n ≥ t0, using the exponential martingale
inequality (i.e. Theorem 1.7.4) one sees that

P

{
sup

t0≤t≤n

[
M(t)− 2

∫ t

t0

|xT (s)g(x(s), s)|2

[1 + |x(s)|2]2
ds

]
> 2 log n

}
≤ 1

n2
.

An application of the Borel–Cantelli lemma then yields that for almost all ω ∈ Ω
there is a random integer n0 = n0(ω) ≥ t0 + 1 such that

sup
t0≤t≤n

[
M(t)− 2

∫ t

t0

|xT (s)g(x(s), s)|2

[1 + |x(s)|2]2
ds

]
≤ 2 log n if n ≥ n0.

That is,

M(t) ≤ 2 log n + 2
∫ t

t0

|xT (s)g(x(s), s)|2

[1 + |x(s)|2]2
ds (5.8)

for all t0 ≤ t ≤ n, n ≥ n0 almost surely. Substituting (5.8) into (5.6) deduces
that

log(1 + |x(t)|2) ≤ log(1 + |x0|2) + 2α(t− t0) + 2 log n

for all t0 ≤ t ≤ n, n ≥ n0 almost surely. Therefore, for almost all ω ∈ Ω, if
n ≥ n0, n− 1 ≤ t ≤ n,

1
t

log(1 + |x(t)|2) ≤ 1
n− 1

[
log(1 + |x0|2) + 2α(n− t0) + 2 log n

]
.

This implies

lim sup
t→∞

1
t

log |x(t)| ≤ lim sup
t→∞

1
2t

log(1 + |x(t)|2)

≤ lim sup
n→∞

1
2(n− 1)

[
log(1 + |x0|2) + 2α(n− t0) + 2 log n

]
= α
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almost surely. The proof is complete.
Let us now recall the linear growth condition: There exists a K > 0 such

that for all (x, t) ∈ Rd × [t0,∞)

|f(x, t)|2
∨
|g(x, t)|2 ≤ K(1 + |x|2). (5.9)

As shown on page 60 (just before the statement of Corollary 4.2), we know that
(5.9) implies (5.2) with α =

√
K+K/2. So we have the following useful corollary.

Corollary 5.2 Under the linear growth condition (5.9), the solution of equation
(5.1) has the property

lim sup
t→∞

1
t

log |x(t)| ≤
√

K +
K

2
a.s. (5.10)

On the other hand, we would like to point out that this corollary can also
be proved straightforward. Note that under the linear growth condition (5.9),
the continuous local martingale M(t), t ≥ t0 (in fact it is a martingale) defined
by (5.7) has its quadratic variation (cf. Theorem 1.5.14)

〈M,M〉t = 4
∫ t

t0

|xT (s)g(x(s), s)|2

[1 + |x(s)|2]2
ds ≤ 4K

∫ t

t0

|xT (s)|2

1 + |x(s)|2
ds ≤ 4K(t− t0).

Hence

lim sup
t→∞

〈M,M〉t
t

≤ 4K a.s.

and then, by Theorem 1.3.4,

lim sup
t→∞

M(t)
t

= 0 a.s. (5.11)

Now (5.10) follows from (5.6) immediately. However, the monotone condition
(5.2) does not necessarily guarantee (5.11) so the more careful arguments carried
out in the proof of Theorem 5.1 are quite necessary.

In the sequel of this section, we shall consider a special case of equation
(5.1), i.e. the equation of the form

dx(t) = f(x(t), t)dt + σdB(t) on t ∈ [t0,∞) (5.12)

with initial value x(t0) = x0 ∈ L2(Ω; Rd), where σ = (σij)d×m is a constant
matrix. Such a stochastic differential equation appears frequently when a system
described by an ordinary differential equation ẋ(t) = f(x(t), t) is subject to
environmental noises that are independent of the state x(t). We shall impose a
condition on f(x, t). That is, there exists a pair of positive constants γ and ρ
such that

xT f(x, t) ≤ γ|x|2 + ρ for all (x, t) ∈ Rd × [t0,∞). (5.13).
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Note that

xT f(x, t) +
1
2
|σ|2 ≤

[
γ

∨(
ρ +

|σ|2

2

)]
(1 + |x|2).

By Theorem 5.1 one deduces that the solution of equation (5.12) has the property

lim sup
t→∞

1
t

log |x(t)| ≤ γ
∨(

ρ +
|σ|2

2

)
a.s. (5.14)

However, with a bit of extra effort, we can obtain much stronger results.

Theorem 5.3 Let (5.13) hold. Then the solution of equation (5.12) has the
property

lim
t→∞

|x(t)|
eγt
√

log log t
= 0 a.s. (5.15)

Before the proof, let us emphasis that the conclusion is independent of ρ
and σ. Besides, (5.15) implies that for almost all ω ∈ Ω,

|x(t)| ≤ eγt
√

log log t provided t is sufficiently large.

We therefore see that

lim sup
t→∞

1
t

log |x(t)| ≤ γ a.s.

which is better than (5.14).

Proof. By Itô’s formula and condition (5.13), one can derive that

e−2γt|x(t)|2 = e−2γt0 |x0|2 + M(t)

+
∫ t

t0

e−2γs
[
−2γ|x(s)|2 + 2xT (s)f(x(s), s) + |σ|2

]
ds

≤ e−2γt0
[
|x0|2 +

1
2γ

(2ρ + |σ|2)
]

+ M(t), (5.16)

where

M(t) = 2
∫ t

t0

e−2γsxT (s)σdB(s).

Assign p > 1 arbitrarily. Let n̄ be an integer sufficiently large for 2n̄p

> t0. For
each integer n ≥ n̄, by Theorem 1.7.4, one sees that

P

{
sup

t0≤t≤2np

[
M(t)− 2

∫ t

t0

e−4γs|xT (s)σ|2ds

]
> 2 log n

}
≤ 1

n2
.

The Borel–Cantelli lemma then yields that for almost all ω ∈ Ω, there is a
random integer n̂ = n̂(ω) ≥ n̄ + 1 such that

M(t) ≤ 2 log n + 2|σ|2
∫ t

t0

e−4γs|x(s)|2ds, t0 ≤ t ≤ 2np
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whenever n ≥ n̂. Substituting this into (5.16) gives that

e−2γt|x(t)|2 ≤ e−2γt0
[
|x0|2 +

1
2γ

(2ρ + |σ|2)
]

+ 2 log n

+ 2|σ|2
∫ t

t0

e−2γs
[
e−2γs|x(s)|2

]
ds,

which then implies, by the Gronwall inequality, that

e−2γt|x(t)|2 ≤
(
e−2γt0

[
|x0|2 +

1
2γ

(2ρ + |σ|2)
]

+ 2 log n
)

exp
( |σ|2

γ

)
for all t0 ≤ t ≤ 2np

, n ≥ n̂ almost surely. Therefore, for almost all ω ∈ Ω, if
2(n−1)p ≤ t ≤ 2np

, n ≥ n̂,

|x(t)|2

e2γt log log t
≤

(
e−2γt0

[
|x0|2 +

1
2γ

(2ρ + |σ|2)
]

+ 2 log n
)

× exp
( |σ|2

γ

)[
p log(n− 1) + log log 2

]−1
.

It then follows that

lim sup
t→∞

|x(t)|2

e2γt log log t
≤ 2

p
exp

( |σ|2
γ

)
a.s.

Since p > 1 is arbitrary, we must have that

lim
t→∞

|x(t)|
eγt
√

log log t
= 0 a.s.

which is the desired conclusion.
We now strengthen condition (5.13) by letting γ = 0 to see how the solution

behaves asymptotically. Before we state a new result, let us emphasis that
although we only use the trace norm |A| =

√
trace(AT A) for a matrix A so far,

we shall use in the sequel of this book the another norm, i.e. the operator norm
||A|| = sup{|Ax| : |x| = 1}. The reader should distinguish these two different
(though equivalent) norms and note that ||A|| ≤ |A|.

Theorem 5.4 Assume that there exists a positive constant ρ such that

xT f(x, t) ≤ ρ for all (x, t) ∈ Rd × [t0,∞). (5.17).

Then the solution of equation (5.12) has the property

lim sup
t→∞

|x(t)|√
2t log log t

≤ ||σ||
√

e a.s. (5.18)
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Proof. Using Itô’s formula and hypothesis (5.17) one can show that for t ≥ t0

|x(t)|2 ≤ |x0|2 + (2ρ + |σ|2)(t− t0) + M(t), (5.19)

where

M(t) = 2
∫ t

t0

xT (s)σdB(s).

Assign β > 0 and θ > 1 arbitrarily. For every integer n sufficiently large for
θn > t0, one can apply Theorem 1.7.4 to show that

P

{
sup

t0≤t≤θn

[
M(t)− 2βθ−n

∫ t

t0

|xT (s)σ|2ds

]
> β−1θn+1 log n

}
≤ 1

nθ
.

The Borel–Cantelli lemma then yields that for almost all ω ∈ Ω, there is a
random integer n0 = n0(ω) sufficiently large such that

M(t) ≤ β−1θn+1 log n + 2β||σ||2θ−n

∫ t

t0

|x(s)|2ds, t0 ≤ t ≤ θn.

Substituting this into (5.19) yields that for almost all ω ∈ Ω,

|x(t)|2 ≤ |x0|2 + (2ρ + |σ|2)(t− t0) + β−1θn+1 log n

+ 2β||σ||2θ−n

∫ t

t0

|x(s)|2ds

for all t0 ≤ t ≤ θn, n ≥ n0, which implies

|x(t)|2 ≤
[
|x0|2 + (2ρ + |σ|2)(θn − t0) + β−1θn+1 log n

]
e2β||σ||2 .

In particular, for almost all ω ∈ Ω, if θn−1 ≤ t ≤ θn, n ≥ n0,

|x(t)|2

2t log log t
≤

[
|x0|2 + (2ρ + |σ|2)(θn − t0) + β−1θn+1 log n

]
× e2β||σ||2(2θn−1[log(n− 1) + log log θ]

)−1
.

Consequently

lim sup
t→∞

|x(t)|2

2t log log t
≤ θ2

2β
e2β||σ||2 a.s.

Finally, letting θ → 1 and choosing β = (2||σ||2)−1 we obtain that

lim sup
t→∞

|x(t)|2

2t log log t
≤ e||σ||2 a.s.

and the required conclusion (5.18) follows immediately. The proof is complete.
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Theorem 5.5 Assume that there exists a pair of positive constants γ and ρ
such that

xT f(x, t) ≤ −γ|x|2 + ρ for all (x, t) ∈ Rd × [t0,∞). (5.20).

Then the solution of equation (5.12) has the property

lim sup
t→∞

|x(t)|√
log t

≤ ||σ||
√

e

γ
a.s. (5.21)

Proof. Assign δ > 0, β > 0 and θ > 1 arbitrarily. In the same way as the
proof of Theorem 5.3, one can show that for almost all ω ∈ Ω, there is a random
integer n0 = n0(ω) sufficiently large such that

e2γt|x(t)|2 ≤ e2γt0 |x0|2 +
e2γt

2γ
(2ρ + |σ|2) + β−1θe2γnδ log n

+ 2β|σ|2e−2γnδ

∫ t

t0

e2γs
[
e2γs|x(s)|2

]
ds,

for all t0 ≤ t ≤ nδ, n ≥ n0, which implies

e2γt|x(t)|2 ≤
[
e2γt0 |x0|2 +

e2γt

2γ
(2ρ + |σ|2) + β−1θe2γnδ log n

]
exp

(β|σ|2

γ

)
.

Therefore, for almost all ω ∈ Ω, if (n− 1)δ ≤ t ≤ nδ, n ≥ n0,

|x(t)|2

log t
≤

[
|x0|2 +

1
2γ

(2ρ + |σ|2) + β−1θe2γδ log n
]

× exp
(β|σ|2

γ

)
[log(n− 1) + log δ]−1.

So

lim sup
t→∞

|x(t)|2

log t
≤ β−1θe2γδ exp

(β|σ|2

γ

)
a.s.

Finally, letting θ → 1, δ → 0 and choosing β = γ/||σ||2 we obtain that

lim sup
t→∞

|x(t)|√
log t

≤ ||σ||
√

e

γ
a.s.

as required. The proof is complete.
It is not difficult to see that Theorems 5.3–5.5 can be extended to equation

(5.1) as long as the coefficient g(x, t) is bounded. More precisely, if there exists
a K > 0 such that

||g(x, t)|| ≤ K for all (x, t) ∈ Rd × [t0,∞),
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then Theorems 5.3–5.5 still hold for the solution of equation (5.1) and, of course,
the corresponding ||σ|| should be replaced by K. We leave the details to the
reader.

To close this section, let us discuss two special cases of equation (5.12) in
order to show that the estimates obtained above are quite sharp. First of all,
let m = d, f(x, t) ≡ 0 and σ be the d× d identity matrix. By Theorem 5.4, we
have that

lim sup
t→∞

|x(t)|√
2t log log t

≤
√

e a.s. (5.22)

On the other hand, in this case, the equation has the explicit solution x(t) =
x0 + B(t)−B(t0). Applying the law of the iterated logarithm for d-dimensional
Brownian motion (cf. page 17) we see that the left-hand side of (5.22) equals
to 1. In other words, even in this very special case, Theorem 5.4 still gives
reasonably sharp estimate. Next, we let d = m = 1, t0 = 0, f(x, t) = −γx,
σ and γ be both positive constants. This is, we consider the one-dimensional
equation

dx(t) = −γx(t)dt + σdB(t) on t ≥ 0, (5.23)

where B(t) is the one-dimensional Brownian motion. The integration by parts
formula yields that

eγtx(t) = x(0) + M(t),

where M(t) = σ
∫ t

0
eγsdB(s) is a continuous martingale with the quadratic

variation 〈M,M〉t = σ2(e2γt − 1)/2γ := µ(t). It is easy to show that the in-
verse function of µ(t) is µ−1(t) = log(2γt/σ2 + 1)/2γ and, by Theorem 1.4.4,
{M(µ−1(t))}t≥0 is a Brownian motion. Hence, by the law of the iterated loga-
rithm (i.e. Theorem 1.4.2),

lim sup
t→∞

|M(µ−1(t))|√
2t log log t

= 1 a.s.

which implies

lim sup
t→∞

|M(t)|√
2µ(t) log log µ(t)

= lim sup
t→∞

|M(t)|
eγt

√
(σ2/γ) log t

= 1 a.s.

Therefore

lim sup
t→∞

|x(t)|√
log t

= lim sup
t→∞

|M(t)|
eγt
√

log t
=

σ
√

γ
a.s. (5.24)

On the other hand, by Theorem 5.5, we can estimate that the left-hand side of
(5.24) is less or equal to σ

√
e/γ, which is reasonably closed to the above accurate

value σ/
√

γ.
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2.6 CARATHEODORY’S APPROXIMATE SOLUTIONS

In the previous sections we have established the existence-and-uniqueness
theorems and discussed the properties of the solution for the stochastic differ-
ential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t), t ∈ [t0, T ] (6.1)

with initial value x(t0) = x0 ∈ L2. However, the Lipschitz condition etc. only
guarantee the existence and uniqueness of the solution and, in general, the so-
lution does not have an explicit expression except the linear case which will be
discussed in Chapter 3 below. In practice, we therefore often seek the approxi-
mate solution rather than the accurate solution.

In Section 2.3 we use the Picard iteration procedure to establish the theorem
on the existence and uniqueness of the solution. As the by-product, we also
obtain the Picard approximate solution for the equation, and Theorem 3.3 gives
an estimate on the difference, called the error , between the approximate and the
accurate solution. In practice, given the error ε > 0, one can determine n for the
left-hand side of (3.10) to be less than ε, and then compute x0(t), x1(t), · · · , xn(t)
by the Picard iteration (3.4). According to Theorem 3.3, we have

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
< ε.

So we can use xn(t) as the approximate solution to equation (6.1). The disadvan-
tage of the Picard approximation is that one needs to compute x0(t), x1(t), · · · ,
xn−1(t) in order to compute xn(t), and this will involve a lot of calculations
on stochastic integrals. More efficient ways in this direction are Caratheodory’s
approximation procedure and Cauchy–Maruyama’s. We shall discuss the former
in this section and latter in the next section.

Let us now give the definition of Caratheodory’s approximate solutions.
For every integer n ≥ 1, define xn(t) = x0 for t0 − 1 ≤ t ≤ t0 and

xn(t) = x0 +
∫ t

t0

f(xn(s− 1/n), s)ds +
∫ t

t0

g(xn(s− 1/n), s)dB(s) (6.2)

for t0 < t ≤ T . Note that for t0 ≤ t ≤ t0 + 1/n, xn(t) can be computed by

xn(t) = x0 +
∫ t

t0

f(x0, s)ds +
∫ t

t0

g(x0, s)dB(s);

then for t0 + 1/n < t ≤ t0 + 2/n,

xn(t) = xn(t0 + 1/n) +
∫ t

t0+1/n

f(xn(s− 1/n), s)ds

+
∫ t

t0+1/n

g(xn(s− 1/n), s)dB(s)
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and so on. In other words, xn(t) can be computed step-by-step on the intervals
[t0, t0 + 1/n], (t0 + 1/n, t0 + 2/n], · · ·. We need to prepare two lemmas in order
to establish the main results.

Lemma 6.1 Under the linear growth condition (3.2), for all n ≥ 1,

sup
t0≤t≤T

E|xn(t)|2 ≤ C1 := (1 + 3E|x0|2)e3K(T−t0)(T−t0+1). (6.3)

Proof. Fix n ≥ 1 arbitrarily. It is easy to see from the definition of xn(t) and
condition (3.2) that {xn(t)}t0≤t≤T ∈ M2([t0, T ];Rd). Note from (6.2) that for
t0 ≤ t ≤ T ,

|xn(t)|2 ≤ 3|x0|2 + 3
∣∣∣∫ t

t0

f(xn(s− 1/n), s)ds
∣∣∣2

+ 3
∣∣∣∫ t

t0

g(xn(s− 1/n), s)dB(s)
∣∣∣2.

Using the Hölder inequality, Theorem 1.5.21 as well as condition (6.2) one can
then derive that

E|xn(t)|2 ≤ 3E|x0|2 + 3(t− t0)E
∫ t

t0

|f(xn(s− 1/n), s)|2ds

+ 3E

∫ t

t0

|g(xn(s− 1/n), s)|2ds

≤ 3E|x0|2 + 3K(T − t0 + 1)
∫ t

t0

[1 + E|xn(s− 1/n)|2]ds

≤ 3E|x0|2 + 3K(T − t0 + 1)
∫ t

t0

[
1 + sup

t0≤r≤s
E|xn(r)|2

]
ds

for all t0 ≤ t ≤ T . Consequently

1 + sup
t0≤r≤t

E|xn(r)|2

≤ 1 + 3E|x0|2 + 3K(T − t0 + 1)
∫ t

t0

[
1 + sup

t0≤r≤s
E|xn(r)|2

]
ds.

The Gronwall inequality implies

1 + sup
t0≤r≤t

E|xn(r)|2 ≤ (1 + 3E|x0|2)e3K(t−t0)(T−t0+1)

for all t0 ≤ t ≤ T . In particular, the required (6.3) follows when t = T .

Lemma 6.2 Under the linear growth condition (3.2), for all n ≥ 1 and t0 ≤
s < t ≤ T with t− s ≤ 1,

E|xn(t)− xn(s)|2 ≤ C2(t− s), (6.4)
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where C2 = 4K(1 + C1) and C1 is defined in Lemma 6.1.

Proof. Note that

xn(t)− xn(s) =
∫ t

s

f(xn(r − 1/n), r)dr +
∫ t

s

g(xn(r − 1/n), r)dB(r).

Hence, by Lemma 6.1,

E|xn(t)− xn(s)|2

≤ 2E
∣∣∣∫ t

s

f(xn(r − 1/n), r)dr
∣∣∣2 + 2E

∣∣∣∫ t

s

g(xn(r − 1/n), r)dB(r)
∣∣∣2

≤ 2K(t− s + 1)
∫ t

s

[1 + E|xn(r − 1/n)|2]dr

≤ 4K(1 + C1)(t− s)

as required.
We can now state the main result.

Theorem 6.3 Assume that the Lipschitz condition (3.1) and the linear growth
condition (3.2) hold. Let x(t) be the unique solution of equation (6.1). Then,
for n ≥ 1,

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
≤ C3

n
, (6.5)

where C3 = 4C2K̄(T − t0)(T − t0 + 4) exp
[
4K̄(T − t0)(T − t0 + 4)

]
and C2 is

defined in Lemma 6.2.

Proof. It is not difficult to derive that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)
≤ 2K̄(T − t0 + 4)

∫ t

t0

E|xn(s− 1/n)− x(s)|2ds

≤ 4K̄(T − t0 + 4)
∫ t

t0

[
E|xn(s)− xn(s− 1/n)|2 + E|xn(s)− x(s)|2

]
ds.

But, by Lemma 6.2, E|xn(s)− xn(s− 1/n)|2 ≤ C2/n if s ≥ t0 + 1/n, otherwise
if t0 ≤ s < t0 + 1/n, E|xn(s)− xn(s− 1/n)|2 = E|xn(s)− xn(t0)|2 ≤ C2(s− t0)
which is less than C2/n. Therefore, it follows from the above inequality that

E
(

sup
t0≤r≤t

|xn(r)− x(r)|2
)
≤ 4

n
C2K̄(T − t0)(T − t0 + 4)

+4K̄(T − t0 + 4)
∫ t

t0

E
(

sup
t0≤r≤s

|xn(r)− x(r)|2
)
ds.

Finally, the required inequality (6.5) follows by applying the Gronwall inequality.
The proof is complete.
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In practice, given the error ε > 0, one can let n be an integer larger than
C3/ε and then compute xn(t) over the intervals [t0, t0 + 1/n], (t0 + 1/n, t0 +
2/n], · · ·, step by step. Theorem 6.3 guarantees that this xn(t) is closed enough
to the accurate solution x(t) in the sense

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)

< ε.

Comparing Picard’s approximation, we see the advantage of Caratheodory’s
approximation that we do not need to compute x1(t), · · · , xn−1(t) but compute
xn(t) directly.

In the proof of Theorem 6.3 we have made use of the fact that equation (6.1)
has a unique solution under conditions (3.1) and (3.2), and the proof therefore
becomes relatively easier. On the other hand, it is possible to show, without
using this fact, that Caratheodory’s approximation sequence {xn(t)} is Cauchy
in L2 hence converges to a limit, say x(t); and then show that x(t) is the unique
solution to equation (6.1), and (6.5) holds. In other words, we can completely
use the Caratheodory approximation procedure to establish the existence-and-
uniqueness theorem. The details can be found in the author’s previous book
Mao (1994a).

Moreover, under quite general conditions, we are still able to show that the
Caratheodory approximate solutions converge to the unique solution of equation
(6.1). This is described as follows.

Theorem 6.4 Let f(x, t) and g(x, t) be continuous. Let x0 be a bounded Rd-
valued Ft0-measurable random variable. Let the linear growth condition (3.2)
hold. Assume that the equation (6.1) has a unique1 solution x(t). Then the
Caratheodory approximate solutions xn(t) converge to x(t) in the sense that

lim
n→∞

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)

= 0. (6.6)

The proof is omitted here but can be found in Mao (1994b). We shall now
use this theorem to establish one useful result.

Theorem 6.5 Let f(x, t) and g(x, t) be continuous. Let x0 be a bounded Rd-
valued Ft0-measurable random variable. Assume that there exists a continuous
increasing concave function κ : R+ → R+ such that∫

0+

du

κ(u)
= ∞, (6.7)

and for all x, y ∈ Rd, t0 ≤ t ≤ T

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ κ(|x− y|2). (6.8)

1
More precisely we mean the pathwise uniqueness here. Please see Remark 7.5 in the next

section for the definition of pathwise uniqueness.
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Then the equation (6.1) has a unique solution x(t). Moreover, the Caratheodory
approximate solutions xn(t) converge to x(t) in the sense of (6.6).

Proof. We leave the proof of existence to the reader (cf. Yamada (1981)). To
show the uniqueness, let x(t) and x̄(t) be two solutions to equation (6.1). By
(6.8), it is easy to show that

E
(

sup
t0≤r≤t

|x(r)− x̄(r)|2
)
≤ 2(T − t0 + 4)

∫ t

t0

Eκ(|x(s)− x̄(s)|2)ds.

Since κ(·) is concave, by the well-known Jensen inequality, we have

Eκ(|x(s)− x̄(s)|2) ≤ κ(E|x(s)− x̄(s)|2) ≤ κ
[
E

(
sup

t0≤r≤s
|x(r)− x̄(r)|2

)]
.

Consequently, for any ε > 0,

E
(

sup
t0≤r≤t

|x(r)− x̄(r)|2
)

≤ ε + 2(T − t0 + 4)
∫ t

t0

κ
[
E

(
sup

t0≤r≤s
|x(r)− x̄(r)|2

)]
ds (6.9)

for all t0 ≤ t ≤ T . Define

G(r) =
∫ r

1

du

κ(u)
on r > 0,

and let G−1(·) be the inverse function of G(·). By condition (6.7), one sees that
limε↓0 G(ε) = −∞ and Dom(G−1) = (−∞, G(∞)). Therefore, by the Bihari
inequality (i.e. Theorem 1.8.2), one deduces from (6.9) that, for all sufficiently
small ε > 0,

E
(

sup
t0≤r≤T

|x(r)− x̄(r)|2
)
≤ G−1

[
G(ε) + 2(T − t0 + 4)(T − t0)

]
.

Letting ε → 0 gives
E

(
sup

t0≤r≤T
|x(r)− x̄(r)|2

)
= 0.

Hence, x(t) = x̄(t) for all t0 ≤ t ≤ T almost surely. The uniqueness has
been proved. To show (6.6), we only need to verify the linear growth condition
according to Theorem 6.4. Since κ(·) is concave and increasing, there must exist
a positive number a such that

κ(u) ≤ a(1 + u) on u ≥ 0.

Besides, let b = supt0≤t≤T (|f(0, t)|2 ∨ |g(0, t)|2) < ∞. Then

|f(x, t)|2 ∨ |g(x, t)|2

≤ 2(|f(0, t)|2 ∨ |g(0, t)|2) + 2(|f(x, t)− f(0, t)|2 ∨ |g(x, t)− g(0, t)|2)
≤ 2b + 2κ(|x|2) ≤ 2b + 2a(1 + |x|2) ≤ 2(a + b)(1 + |x|2).
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That is, the linear growth condition (3.2) is fulfilled with K = 2(a + b). The
proof is now complete.

To close this section, let us consider a one-dimensional equation

dx(t) = |x(t)|αdB(t) on t0 ≤ t ≤ T (6.10)

with initial value x(t0) = x0 which is bounded, where 1
2 ≤ α < 1 and B(t) is

a one-dimensional Brownian motion. As we pointed out before, equation (6.10)
has a unique solution. Besides, the linear growth condition is clearly fulfilled.
Therefore, according to Theorem 6.4, the Caratheodory approximate solutions
converge to the unique solution. However, it is still open whether the Picard
approximate solutions converge to the unique solution or not in this case. So
far, perhaps the best conditions which guarantee the convergence of the Picard
approximate solutions to the unique solution of equation (6.1) are the conditions
given in Theorem 6.5, and they were obtained by Yamada (1981).

2.7 EULER–MARUYAMA’S APPROXIMATE SOLUTIONS

Let us now turn to discuss the Euler–Maruyama approximate solutions
which are defined as follows: For every integer n ≥ 1, define xn(t0) = x0, and
then for t0 + (k − 1)/n < t ≤ (t0 + k/n) ∧ T, k = 1, 2, · · ·,

xn(t) = xn(t0 + (k − 1)/n) +
∫ t

t0+(k−1)/n

f(xn(t0 + (k − 1)/n), s)ds

+
∫ t

t0+(k−1)/n

g(xn(t0 + (k − 1)/n), s)dB(s). (7.1)

Note that if define

x̂n(t) = x0I{t0}(t) +
∑
κ≥1

xn(t0 + (k − 1)/n)I(t0+(k−1)/n, t0+k/n](t) (7.2)

for t0 ≤ t ≤ T , then it follows from (7.1) that

xn(t) = x0 +
∫ t

t0

f(x̂n(s), s)ds +
∫ t

t0

g(x̂n(s), s)dB(s). (7.3)

Making use of this expression we can show the following lemmas in the same
way as Lemmas 6.1 and 6.2.

Lemma 7.1 Under the linear growth condition (3.2), the Euler–Maruyama
approximate solutions xn(t) have the property that

sup
t0≤t≤T

E|xn(t)|2 ≤ C1 := (1 + 3E|x0|2)e3K(T−t0)(T−t0+1).
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Lemma 7.2 Under the linear growth condition (3.2), the Euler–Maruyama
approximate solutions xn(t) have the property that for t0 ≤ s < t ≤ T with
t− s ≤ 1,

E|xn(t)− xn(s)|2 ≤ C2(t− s),

where C2 = 4K(1 + C1) and C1 is defined in Lemma 7.1.

We can then prove the following theorem in the same way as Theorem 6.3.

Theorem 7.3 Assume that the Lipschitz condition (3.1) and the linear growth
condition (3.2) hold. Let x(t) be the unique solution of equation (6.1), and
xn(t), n ≥ 1 be the Euler–Maruyama approximate solutions. Then

E
(

sup
t0≤t≤T

|xn(t)− x(t)|2
)
≤ C3

n
,

where C3 = 4C2K̄(T − t0)(T − t0 + 4) exp
[
4K̄(T − t0)(T − t0 + 4)

]
and C2 is

defined in Lemma 7.2.

We leave these proofs to the reader. Moreover, we also have the following
more general result.

Theorem 7.4 Under the same conditions as Theorem 6.4, Euler–Maruyama’s
approximate solutions xn(t) converge to the unique solution x(t) of equation
(6.1) in the sense of (6.6).

This result was obtained by Kaneko & Nakao (1988). This theorem and
Theorem 6.4 tell us that both Caratheodory’s and Euler–Maruyama’s approxi-
mate solutions converge to the unique solution of equation (6.1) under these quite
general conditions described in Theorem 6.4. However, it is still open whether
the Picard approximate solutions converge to the unique solution under these
conditions.

It is interesting to see that the Euler–Maruyama approximation becomes
much easier for the time-homogeneous stochastic differential equation

dx(t) = f(x(t))dt + g(x(t))dB(t). (7.4)

In this case, the Euler–Maruyama approximate solutions take the following sim-
ple form: xn(t0) = x0 and

xn(t) = xn(t0 + (k − 1)/n) + f(xn(t0 + (k − 1)/n))[t− t0 − (k − 1)/n]
+ g(xn(t0 + (k − 1)/n))[B(t)−B(t0 − (k − 1)/n)]. (7.5)

for t0 + (k − 1)/n < t ≤ (t0 + k/n) ∧ T, k = 1, 2, · · ·.
To close this section, let us make an important remark.

Remark 7.5 In the previous sections, the probability space (Ω,F , P ), the fil-
tration {Ft}t≥0, the Brownian motion B(t) and the coefficients f(x, t), g(x, t)
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are all given in advance, and then the solution x(t) is constructed. Such a so-
lution is called a strong solution. If we are only given the coefficients f(x, t)
and g(x, t), and we are allowed to construct a suitable probability space, a fil-
tration, a Brownian motion and find a solution to the equation, then such a
solution is called a weak solution. Two solutions (weak or strong) are said to be
weakly unique if they are identical in probability law, that is, they have the same
finite-dimensional probability distribution. If two weak solutions founded under
whatever probability space with a filtration and a Brownian motion are indis-
tinguishable, we say that pathwise uniqueness holds for the equation. Clearly a
strong solution is a weak one, but the converse is not true in general. See the
Tanaka example explained in Rogers & Williams (1987), Sec.V.16. Also, the
pathwise uniqueness implies the weak uniqueness. Moreover, all the conditions
given above e.g. the Lipschitz condition guarantee the pathwise uniqueness,
since the uniqueness has been proved under the arbitrarily given probability
space etc. In this book, we are always concerned with strong solutions unless
otherwise specified.

2.8 SDE AND PDE: FEYNMAN–KAC’S FORMULA

Stochastic differential equations have many applications. One of the most
important applications is the stochastic representation for solutions to partial
differential equations, and this is known as the Feynman–Kac formula. The
formula builds a bridge between stochastic differential equations (SDE) and
partial differential equations (PDE), and creates the probabilistic approach to
the study of partial differential equations (cf. Friedlin (1985)).

(i) The Dirichlet Problem
Let us first consider the Dirichlet problem or the boundary value problem{

Lu(x) = ϕ(x) in D,
u(x) = φ(x) on ∂D, (8.1)

where L is a linear partial differential operator

L =
1
2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

fi(x)
∂

∂xi
+ c(x) (8.2)

with real-valued coefficients defined in a d-dimensional domain D ⊂ Rd. It is
standard to arrange aij symmetrically, i.e. aij = aji. Assume that D is open
and bounded, and its boundary ∂D is C2. We shall denote by D̄ the closure of
D. Assume that L is uniformly elliptic in D, that is, for some µ > 0,

yT a(x)y ≥ µ|y|2 if x ∈ D, y ∈ Rd, (8.3)

where a(x) = (aij(x))d×d. Assume also that

aij , fi are uniformly Lipschitz continuous in D̄, (8.4)
c ≤ 0 and c is uniformly Hölder continuous in D̄. (8.5)
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Under these hypotheses, it is well-known, by the theory of partial differential
equations, that the Dirichlet problem (8.1) has a unique solution u for any given
functions ϕ, φ satisfying:

ϕ is uniformly Hölder continuous in D̄, (8.6)
φ is continuous on ∂D. (8.7)

We shall now represent u in terms of a solution of a stochastic differential equa-
tion.

Note from (8.3) that for every x ∈ D, a(x) is a d × d symmetric positive
definite matrix. It is well-known that there exists a unique d×d positive definite
matrix g(x) = (gij)d×d such that g(x)gT (x) = a(x), and g(x) is called the
square root of a(x). Moreover, condition (8.4) guarantees that g(x) is uniformly
Lipschitz continuous in D̄. Extend g(x) and f(x) = (f1(x), · · · , fd(x))T into the
whole space Rd so that they remain uniformly Lipschitz continuous, i.e.

|f(x)− f(y)|
∨
|g(x)− g(y)| ≤ K̄|x− y| if x, y ∈ Rd (8.8)

for some K̄ > 0. Clearly, (8.8) implies that f and g satisfy the linear growth
condition as well. Now, let B(t) = (B1(t), · · · , Bd(t))T , t ≥ 0 be a d-dimensional
Brownian motion defined on the complete probability space (Ω,F , P ) with the
filtration {Ft}t≥0 satisfying the usual conditions. Consider the d-dimensional
stochastic differential equation

dξ(t) = f(ξ(t), t)dt + g(ξ(t), t)dB(t) on t ≥ 0 (8.9)

with initial value ξ(0) = x ∈ D. By Theorem 3.6, equation (8.9) has a unique
global solution, which is denoted by ξx(t).

Theorem 8.1 Assume that D is a bounded open subset of Rd and its boundary
∂D is C2. Let (8.3)–(8.7) hold. Then the unique solution u(x) of the Dirichlet
problem (8.1) is given by

u(x) = E

[
φ(ξx(τ)) exp

(∫ τ

0

c(ξx(s))ds
)]

− E

[∫ τ

0

ϕ(ξx(t)) exp
(∫ t

0

c(ξx(s))ds
)
dt

]
, (8.10)

where τ is the first exit time of ξx(t) from D, i.e. τ = inf{t ≥ 0 : ξx(t) /∈ D}.

Proof. Let ε > 0, and denote by Uε the closed ε-neighbourhood of ∂D. Let
Dε = D−Uε, and let τε be the first exit time of ξx(t) from Dε. By Itô’s formula,
for any T > 0,

E

[
u(ξx(τε ∧ T )) exp

(∫ τε∧T

0

c(ξx(s))ds
)]
− u(x)

= E

[∫ τε∧T

0

Lu(ξx(t)) exp
(∫ t

0

c(ξx(s))ds
)
dt

]
= E

[∫ τε∧T

0

ϕ(ξx(t)) exp
(∫ t

0

c(ξx(s))ds
)
dt

]
. (8.11)
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Taking ε → 0 and using the bounded convergence theorem, we obtain that

u(x) = E

[
u(ξx(τ ∧ T )) exp

(∫ τ∧T

0

c(ξx(s))ds
)]

− E

[∫ τ∧T

0

ϕ(ξx(t)) exp
(∫ t

0

c(ξx(s))ds
)
dt

]
. (8.12)

If we can prove that τ < ∞ a.s., then, by letting T →∞ and using the bounded
convergence theorem, we get the assertion (8.10). To show τ < ∞ a.s., consider
the function

V (x) = −eλx1 for x ∈ Rd.

Noting from (8.3) that a11(x) ≥ µ > 0 in D, we can choose λ > 0 sufficiently
large for

f1(x)Vx1(x) +
1
2
a11(x)Vx1x1(x) = λeλx1

[
f1(x)− λ

2
a11(x)

]
≤ −1 in D.

By Itô’s formula,

EV (ξx(τ ∧ T ))− V (x)

= E

∫ τ∧T

0

[
f1(ξx(s))Vx1(ξx(s)) +

1
2
a11(ξx(s))Vx1x1(ξx(s))

]
ds

≤ −E(τ ∧ T ).

Since |V (x)| ≤ C in D for some C > 0, we then have E(τ ∧ T ) ≤ 2C. Taking
T → ∞ and using the monotone convergence theorem we get Eτ ≤ 2C, which
implies that τ < ∞ a.s. The proof is complete.

As an example, let L be the Laplace operator ∆ =
∑d

i=1
∂2

∂x2
i

. Then the
boundary value problem (8.1) reduces to{

∆u(x) = ϕ(x) in D,
u(x) = φ(x) on ∂D, (8.13)

and the corresponding stochastic differential equation (8.9) takes a simple form
dξ(t) = dB(t) which has the solution ξx(t) = x + B(t). By Theorem 8.1, if (8.6)
and (8.7) hold then the unique solution of equation (8.13) is given by

u(x) = E

[
φ(x + B(τ)) exp

(∫ τ

0

c(x + B(s))ds
)]

− E

[∫ τ

0

ϕ(x + B(t)) exp
(∫ t

0

c(x + B(s))ds
)
dt

]
, (8.14)

where τ = inf{t ≥ 0 : x + B(t) /∈ D}.
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(ii) The Initial-Boundary Value Problem
Consider next the initial-boundary value problem

∂
∂tu(x, t) + Lu(x, t) = ϕ(x) in D × [0, T ),
u(x, T ) = φ(x) on D,
u(x, t) = b(x, t) on ∂D × [0, T ],

(8.15)

where T > 0, D is the same as before, and

L =
1
2

d∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

d∑
i=1

fi(x, t)
∂

∂xi
+ c(x, t) (8.16)

with real-valued coefficients defined in D̄ × [0, T ]. Set a(x, t) = (aij(x, t))d×d.
We impose the following hypotheses:

yT a(x, t)y ≥ µ|y|2 if (x, t) ∈ D × [0, T ), y ∈ Rd,

aij , fi are uniformly Lipschitz continuous in (x, t) ∈ D̄ × [0, T ],
c, ϕ are uniformly Hölder continuous in (x, t) ∈ D̄ × [0, T ],

φ is continuous on D̄, b is continuous on ∂D × [0, T ],
φ(x) = b(x, T ) if x ∈ ∂D.

(8.17)

It is well-known that the initial-boundary value problem (8.15) has a unique
solution if (8.17) is fulfilled. To represent u in terms of a solution of a stochastic
differential equation, set f(x, t) = (f1, · · · , fd)T and let g(x, t) = (gij(x, t))d×d

be the square root of a(x, t) in D̄ × [0, T ], i.e. g(x, t)gT (x, t) = a(x, t). Extend
f, g to Rd × [0, T ] keeping the Lipschitz continuity

|f(x, t)− f(y, s)|
∨
|g(x, t)− g(y, s)| ≤ K(|x− y|+ |t− s|) (K > 0).

For every (x, t) ∈ D × [0, T ), consider the stochastic differential equation

dξ(s) = f(ξ(s), s)ds + g(ξ(s), s)dB(s) on [t, T ] (8.18)

with initial value ξ(t) = x. By Theorem 3.1, equation (8.18) has a unique
solution, which we denote by ξx,t(s) on s ∈ [t, T ].

Theorem 8.2 Assume that D is a bounded open subset of Rd and its boundary
∂D is C2. Let (8.17) hold. Then the unique solution u(x, t) of the initial-
boundary value problem (8.15) is given by

u(x, t) = E

[
I{τ<T}b(ξx,t(τ), τ) exp

(∫ τ

t

c(ξx,t(s), s)ds
)]

+ E

[
I{τ=T}φ(ξx,t(T )) exp

(∫ T

t

c(ξx,t(s), s)ds
)]

− E

[∫ τ

t

ϕ(ξx,t(s), s) exp
(∫ s

t

c(ξx,t(r), r)dr
)
ds

]
, (8.19)
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where τ = T ∧ inf{s ∈ [t, T ] : ξx,t(s) /∈ D}.

The proof of this theorem is similar to that of Theorem 8.1, but here one
applies Itô’s formula to

u(ξx,t(s), s) exp
(∫ s

t

c(ξx,t(r), r)dr
)
. (8.20)

(iii) The Cauchy Problem
When D = Rd in the initial-boundary value problem (8.15), we arrive at

the following Cauchy problem{
∂
∂tu(x, t) + Lu(x, t) = ϕ(x) in Rd × [0, T ),
u(x, T ) = φ(x) in Rd,

(8.21)

where L is given by (8.16). We shall assume:
(H1) The functions aij , fi are bounded in Rd × [0, T ] and uniformly Lipschitz

continuous in (x, t) in any compact subset of Rd× [0, T ]. The functions aij

are Hölder continuous in x, uniformly with respect to (x, t) in Rd × [0, T ].
Moreover, for some µ > 0,

yT a(x, t)y ≥ µ|y|2 if (x, t) ∈ Rd × [0, T ), y ∈ Rd.

(H2) The function c is bounded in Rd × [0, T ] and uniformly Hölder continuous
in (x, t) in any compact subset of Rd × [0, T ].

(H3) The function f is continuous in Rd × [0, T ], Hölder continuous in x uni-
formly with respect to (x, t) in Rd × [0, T ]. The function φ is continuous
in Rd. Moreover, for some α > 0, β > 0,

|f(x, t)| ∨ |φ(x)| ≤ β(1 + |x|α) if x ∈ Rd, t ∈ [0, T ].

Under these hypotheses, there exists a unique solution u to the Cauchy problem
(8.21). Besides, by Theorem 3.4, the stochastic differential equation (8.18) also
has a unique solution denoted by ξx,t(s).

Theorem 8.3 Let (H1)–(H3) hold. Then the unique solution u(x, t) of the
Cauchy problem (8.21) is given by

u(x, t) = E

[
φ(ξx,t(T )) exp

(∫ T

t

c(ξx,t(s), s)ds
)]

− E

[∫ T

t

ϕ(ξx,t(s), s) exp
(∫ s

t

c(ξx,t(r), r)dr
)
ds

]
. (8.22)

The proof follows by applying Itô’s formula to the function defined by
(8.20).
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We now consider some special cases of equation (8.21). First, when ϕ = 0
and c = 0, equation (8.21) becomes the Kolmogorov backward equation{

∂
∂tu(x, t) + Lu(x, t) = 0 in Rd × [0, T ),
u(x, T ) = φ(x) in Rd,

(8.23)

where

L =
1
2

d∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

d∑
i=1

fi(x, t)
∂

∂xi
.

In this case, formula (8.22) reduces to the simple form

u(x, t) = Eφ(ξx,t(T )). (8.24)

Next, if let L = ∆ and ϕ = 0, equation (8.21) becomes the heat equation{
∂
∂tu(x, t) + ∆u(x, t) = 0 in Rd × [0, T ),
u(x, T ) = φ(x) in Rd.

(8.25)

In this case, the corresponding stochastic differential equation (8.18) reduces to

dξ(s) = dB(s) on [t, T ]

with initial value ξ(t) = x. Clearly, this stochastic equation has the explicit
solution ξx,t(s) = x + B(s) − B(t). Therefore, by Theorem 8.3, the solution of
the heat equation (8.25) is given by

u(x, t) = Eφ(x + B(T )−B(t)). (8.26)

To close this chapter, let us point out that Feynman–Kac formula can also
be applied to quasilinear parabolic partial differential equations. To explain, let
us consider the following quasilinear equation{

∂
∂tu(x, t) + Lu(x, t) + c(x, u)u(x, t) = 0 in Rd × [0, T ),
u(x, T ) = φ(x) in Rd,

(8.27)

where c is now a continuous function defined on Rd × R. In this case, the
Feynman–Kac formula has the form

u(x, t) = E

[
φ(ξx,t(T )) exp

(∫ T

t

c(ξx,t(s), u(ξx,t(s), s))ds
)]

. (8.28)

Of course, this is no longer an explicit representation. Nevertheless it is still
very useful. For example, assume φ(x) ≥ 0 and

c(x) ≤ c(x, u) ≤ c̄(x).
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It then follows from (8.28) that

E

[
φ(ξx,t(T )) exp

(∫ T

t

c(ξx,t(s))ds
)]

≤ u(x, t) ≤ E

[
φ(ξx,t(T )) exp

(∫ T

t

c̄(ξx,t(s))ds
)]

. (8.29)

If denote by ū(x, t) and u(t, x) the corresponding solutions of equation (8.27)
with c(x, u) replaced by c̄(x) and c(x), respectively, we can then rewrite (8.29)
as

u(x, t) ≤ u(x, t) ≤ ū(x, t), (8.30)

which is a comparison result.

2.9 THE SOLUTIONS AS MARKOV PROCESSES

In this section we shall discuss the Markov property of the solutions. For the
convenience of the reader, let us recall some basic facts about Markov processes
(for details please see Doob (1953)). In Chapter 1, we gave the definition of the
conditional expectation E(X|G). If G is the σ-algebra generated by a random
variable Y , i.e. G = σ{Y }, we write E(X|G) = E(X|Y ). If X is the indicator
function of set A, we write E(IA|G) = P (A|G).

A d-dimensional Ft-adapted process {ξ(t)}t≥0 is called a Markov process if
the following Markov property is satisfied: for all 0 ≤ s ≤ t < ∞ and A ∈ Bd,

P (ξ(t) ∈ A|Fs) = P (ξ(t) ∈ A|ξ(s)). (9.1)

In a usual definition of a Markov process, the σ-algebra Fs is set to be σ{ξ(r) :
0 ≤ r ≤ s}, but we here would like to make the definition slightly more general.
The Markov property means that given a Markov process, the past and future
are independent when the present is known. There are several equivalent for-
mulations of the Markov property. For example, property (9.1) is equivalent to
the following one: for any bounded Borel measurable function ϕ : Rd → R and
0 ≤ s ≤ t < ∞,

E(ϕ(ξ(t))|Fs) = E(ϕ(ξ(t))|ξ(s)). (9.2)

The transition probability of the Markov process is a function P (x, s;A, t), de-
fined on 0 ≤ s ≤ t < ∞, x ∈ Rd and A ∈ Bd, with the following properties:

a) For every 0 ≤ s ≤ t < ∞ and A ∈ Bd,

P (ξ(s), s;A, t) = P (ξ(t) ∈ A|ξ(s))

b) P (x, s; ·, t) is a probability measure on Bd for every 0 ≤ s ≤ t < ∞ and
x ∈ Rd.

c) P (·, s;A, t) is Borel measurable for every 0 ≤ s ≤ t < ∞ and A ∈ Bd.
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d) The Chapman–Kolmogorov equation

P (x, s;A, t) =
∫

Rd

P (y, r;A, t)P (x, s; dy, r)

holds for any 0 ≤ s ≤ r ≤ t < ∞, x ∈ Rd and A ∈ Bd.
Clearly, in terms of transition probability, the Markov property (9.1) becomes

P (ξ(t) ∈ A|Fs) = P (ξ(s), s;A, t). (9.3)

We shall use the notation

P{ξ(t) ∈ A|ξ(s) = x} = P (x, s;A, t),

which is the probability that the process will be in the set A at time t given the
condition that the process was in the state x at time s ≤ t. It should be stressed
that the number P{ξ(t) ∈ A|ξ(s) = x} is simply defined by the equation above,
even though the condition {ξ(s) = x} may have probability 0. We shall also use
the notation

Ex,sϕ(ξ(t)) =
∫

Rd

ϕ(y)P (x, s; dy, t). (9.4)

With this notation, the Markov property (9.2) can be written as

E(ϕ(ξ(t))|Fs) = Eξ(s),sϕ(ξ(t)), (9.5)

where the right hand side is the value of the function Ex,sϕ(ξ(t)) at x = ξ(s).
A Markov process {ξ(t)}t≥0 is said to be homogeneous (with respect to

time) if its transition probability P (x, s;A, t) is stationary, namely

P (x, s + u;A, t + u) = P (x, s;A, t)

for all 0 ≤ s ≤ t < ∞, u ≥ 0, x ∈ Rd and A ∈ Bd. In this case, the transition
probability is a function of x,A and t− s only, since

P (x, s;A, t) = P (x, 0;A, t− s).

We can therefore simply write P (x, 0;A, t) = P (x;A, t). Clearly, P (x;A, t) is the
probability of transition from x to A in time t, regardless of the actual position
of the interval of length t on the time axis. Moreover, the Chapman–Kolmogorov
equation becomes

P (x;A, t + s) =
∫

Rd

P (y;A, s)P (x; dy, t).

Furthermore, with the notation

Exϕ(ξ(t)) =
∫

Rd

ϕ(y)P (x; dy, t),
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the Markov property becomes

E(ϕ(ξ(t))|Fs) = Eξ(s)ϕ(ξ(t− s)).

A d-dimensional process {ξ(t)}t≥0 is called a strong Markov process if the
following strong Markov property is satisfied: for any bounded Borel measurable
function ϕ : Rd → R, any finite Ft-stopping time τ and t ≥ 0,

E(ϕ(ξ(τ + t))|Fτ ) = E(ϕ(ξ(τ + t))|ξ(τ)). (9.6)

Clearly a strong Markov process is a Markov process. In terms of transition
probability, the strong Markov property becomes

P (ξ(τ + t) ∈ A|Fτ ) = P (ξ(τ), τ ;A, τ + t).

Using the notation Ex,s defined above, the strong Markov property can also be
written as

E(ϕ(ξ(τ + t))|Fτ ) = Eξ(τ),τϕ(ξ(τ + t)).

Especially, in the homogeneous case, this becomes

E(ϕ(ξ(τ + t))|Fτ ) = Eξ(τ)ϕ(ξ(t)).

In general, a Markov process is not a strong one. The conditions that
guarantee a Markov process possesses the strong Markov property are the right
continuity of the sample paths plus the so-called Feller property . If for any
bounded continuous function ϕ : Rd → R, the mapping

(x, s) →
∫

Rd

ϕ(y)P (x, s; dy, s + λ)

is continuous, for any fixed λ > 0, we then say the transition probability (or the
corresponding Markov process) satisfies the Feller property .

We can now begin to discuss the Markov property of the solutions of
stochastic differential equations.

Theorem 9.1 Let ξ(t) be a solution of the Itô equation

dξ(t) = f(ξ(t), t)dt + g(ξ(t), t)dB(t) on t ≥ 0, (9.7)

whose coefficients satisfy the conditions of the existence-and-uniqueness theorem.
Then ξ(t) is a Markov process whose transition probability is defined by

P (x, s;A, t) = P{ξx,s(t) ∈ A}, (9.8)

where ξx,s(t) is the solution of the equation

ξx,s(t) = x +
∫ t

s

f(ξx,s(r), r)dr +
∫ t

s

g(ξx,s(r), r)dB(r) on t ≥ s. (9.9)
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To prove this theorem, we need to prepare a lemma.
Lemma 9.2 Let h(x, ω) be a scalar bounded measurable random function of x,
independent of Fs. Let ζ be an Fs-measurable random variable. Then

E(h(ζ, ω)|Fs) = H(ζ), (9.10)

where H(x) = Eh(x, ω).

Proof. First, assume that h(x, ω) has the following simple form

h(x, ω) =
k∑

i=1

ui(x)vi(ω) (9.11)

with ui(x)’s bounded deterministic functions of x and vi(ω)’s bounded random
variables independent of Fs. Clearly,

H(x) =
k∑

i=1

ui(x)Evi(ω).

Moreover, for any set G ∈ Fs, we compute

E[h(ζ, ω)IG] = E

( k∑
i=1

ui(ζ)vi(ω)IG

)
=

k∑
i=1

E[ui(ζ)IG]Evi(ω)

= E

( k∑
i=1

ui(ζ)Evi(ω)IG

)
= E[H(ζ)IG].

By definition, this means that (9.10) holds if h(x, ω) has the form of (9.11).
Since any bounded measurable random function h(x, ω) can be approximated
by functions of form (9.11), the general result of the lemma follows immediately.

Theorem 9.1 can now be proved easily.

Proof of Theorem 9.1 Let Gs = σ{B(r)−B(s) : r ≥ s}. Clearly, Gs is indepen-
dent of Fs. Moreover, the value of ξx,s(t) depends completely on the increments
B(r)−B(s) for r ≥ s and so is Gs-measurable. Hence, ξx,s(t) is independent of
Fs. On the other hand, note that ξ(t) = ξξ(s),s(t) on t ≥ s, since both ξ(t) and
ξξ(s),s(t) satisfy the equation

ξ(t) = ξ(s) +
∫ t

s

f(ξ(r), r)dr +
∫ t

s

g(ξ(r), r)dB(r)

whose solution is unique. For any A ∈ Bd, we now apply Lemma 9.2 with
h(x, ω) = IA(ξx,s(t)) to compute that

P (ξ(t) ∈ A|Fs) = E(IA(ξ(t))|Fs) = E(IA(ξξ(s),s(t))|Fs)

= E(IA(ξx,s(t))
∣∣
x=ξ(s)

= P (x, s;A, t)
∣∣
x=ξ(s)

= P (ξ(s), s;A, t)
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if P (x, s;A, t) is defined by (9.8). The proof is complete.
For the strong Markov property of the solution we need to strengthen the

conditions slightly.

Theorem 9.3 Let ξ(t) be a solution of the Itô equation

dξ(t) = f(ξ(t), t)dt + g(ξ(t), t)dB(t) on t ≥ 0.

Assume the coefficients are uniformly Lipschitz continuous and satisfy the linear
growth condition, that is, there are two positive constants K and K̄ such that

|f(x, t)− f(y, t)|2
∨
|g(x, t)− g(y, t)|2 ≤ K̄|x− y|2 (9.12)

and
|f(x, t)|2

∨
|g(x, t)|2 ≤ K(1 + |x|2) (9.13)

for all x, y ∈ Rd and t ≥ 0. Then ξ(t) is a strong Markov process.

We again need to prepare a lemma in order to prove the theorem.

Lemma 9.4 Let (9.12) and (9.13) hold. For every pair (x, s) ∈ Rd × R+, let
ξx,s(t) be the solution of the equation

ξx,s(t) = x +
∫ t

s

f(ξx,s(r), r)dr +
∫ t

s

g(ξx,s(r), r)dB(r) on t ≥ s.

Then for any T > 0 and δ > 0,

E

(
sup

u≤t≤T
|ξx,s(t)− ξy,u(t)|2

)
≤ C(|x− y|2 + |u− s|) (9.14)

if 0 ≤ s, u ≤ T and |x| ∨ |y| ≤ δ, where C is a positive constant depending on
T, δ,K and K̄.

Proof. Without loss of generality we may assume that s ≤ u. Clearly, for
u ≤ t ≤ T ,

ξx,s(t)− ξy,u(t) = ξx,s(u)− y +
∫ t

u

[
f(ξx,s(r), r)− f(ξy,u(r), r)

]
dr

+
∫ t

u

[
g(ξx,s(r), r)− g(ξy,u(r), r)

]
dB(r). (9.15)

Note from Theorem 4.3 (condition (9.13) is used here) that

E|ξx,s(u)− y|2 ≤ 2E|ξx,s(u)− x|2 + 2|x− y|2 ≤ C1|u− s|+ 2|x− y|2, (9.16)
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where C1 is a positive constant depending on T, δ,K. It is now easy to drive
from (9.15), (9.16) and (9.12) that if u ≤ v ≤ T ,

E

(
sup

u≤t≤v
|ξx,s(t)− ξy,u(t)|2

)
≤ 3C1|u− s|+ 6|x− y|2

+3K̄(T + 4)
∫ v

u

E

(
sup

u≤t≤r
|ξx,s(t)− ξy,u(t)|2

)
dr.

This easily implies the desired assertion (9.14).
We can now show the strong Markov property of the solution.

Proof of Theorem 9.3. The Markov property follows from Theorem 9.1 and
it is known that the sample paths of the solution are continuous. Therefore we
need only to verify the Feller property, this is, to show the mapping

(x, s) →
∫

Rd

ϕ(y)P (x, s; dy, s + λ) = Eϕ(ξx,s(s + λ))

is continuous, for any bounded continuous function ϕ : Rd → R and any fixed
λ > 0. Note that

Eϕ(ξx,s(s + λ))− Eϕ(ξy,u(u + λ))
= Eϕ(ξx,s(s + λ))− Eϕ(ξx,s(u + λ))
+ Eϕ(ξx,s(u + λ))− Eϕ(ξy,u(u + λ)).

But, by Lemma 9.4 and the bounded convergence theorem,

Eϕ(ξx,s(u + λ))− Eϕ(ξy,u(u + λ)) → 0 as (y, u) → (x, s).

Also
Eϕ(ξx,s(s + λ))− Eϕ(ξx,s(u + λ)) → 0 as u → s.

In consequence,

Eϕ(ξx,s(s + λ))− Eϕ(ξy,u(u + λ)) → 0 as (y, u) → (x, s).

In other words, Eϕ(ξx,s(s + λ)) as a function of (x, s) is continuous, and that is
the Feller property. The theorem has been proved.

Let us now consider the time-homogeneous stochastic differential equations.
By time-homogeneous equations, we mean equations whose coefficients do not
depend explicitly on time, namely equations of the form

dξ(t) = f(ξ(t))dt + g(ξ(t))dB(t), t ≥ 0. (9.17)

We assume that f : Rd → Rd and g : Rd → Rd×m satisfy the conditions of the
existence-and-unique theorem.
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Theorem 9.5 Let ξ(t) be a solution of equation (9.17). Then ξ(t) is a homo-
geneous Markov process. If f and g are uniformly Lipschitz continuous (hence
the linear growth condition is satisfied), then the solution ξ(t) is a homogeneous
strong Markov process.

Proof. Clearly, we only need to show the homogeneous property. By Theorem
9.1, the transition probability is given by

P (x, s;A, s + t) = P{ξx,s(s + t) ∈ A}, (9.18)

where ξx,s(s + t) is the solution of the equation

ξx,s(s + t) = x +
∫ s+t

s

f(ξx,s(r))dr +
∫ s+t

s

g(ξx,s(r))dB(r) on t ≥ 0. (9.19)

Write this equation as

ξx,s(s+ t) = x+
∫ t

0

f(ξx,s(s+ r))dr +
∫ t

0

g(ξx,s(s+ r))dB̃(r) on t ≥ 0, (9.20)

where B̃(r) = B(s + r) − B(s) on r ≥ 0 is a Brownian motion as well. On the
other hand, we clearly have

ξx,0(t) = x +
∫ t

0

f(ξx,0(r))dr +
∫ t

0

g(ξx,0(r))dB(r) on t ≥ 0. (9.21)

Comparing equation (9.20) with (9.21), we see by the weak uniqueness (Remark
7.5) that {ξx,s(s + t)}t≥0 and {ξx,0(t)}t≥0 are identical in probability law. In
consequence,

P{ξx,s(s + t) ∈ A} = P{ξx,0(t) ∈ A},

that is
P (x, s;A, s + t) = P (x, 0;A, t).

The proof is therefore complete.



3

Linear Stochastic

Di�erential Equations

3.1 INTRODUCTION

In the previous chapter, we discussed the solutions of stochastic differential equa-
tions. In general, nonlinear stochastic differential equations do not have explicit
solutions and, in practice, we can use approximate solutions. However, it is pos-
sible to find the explicit solutions to linear equations. For example, recall the
simple stochastic population growth model

dN(t) = r(t)N(t)dt + σ(t)N(t)dB(t) on t ≥ 0 (1.1)

with initial value N(0) = N0 > 0. By Itô’s formula,

log N(t) = log N0 +
∫ t

0

(
r(s)− σ2(s)

2

)
ds +

∫ t

0

σ(s)dB(s).

This implies the explicit solution of equation (1.1)

N(t) = N0 exp
[∫ t

0

(
r(s)− σ2(s)

2

)
ds +

∫ t

0

σ(s)dB(s)
]
. (1.2)

In this chapter we wish, if possible, to get the explicit solution to the general
d-dimensional linear stochastic differential equation

dx(t) = (F (t)x(t) + f(t))dt +
m∑

k=1

(Gk(t)x(t) + gk(t))dBk(t) (1.3)

91
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on [t0, T ], where F (·), Gk(·) are d×d-matrix-valued functions, f(·), gk(·) are Rd-
valued functions and, as before, B(t) = (B1(t), · · · , Bm(t))T is an m-dimensional
Brownian motion. The linear equation is said to be homogeneous if f(t) =
g1(t) = · · · = gm(t) ≡ 0. It is said to be linear in the narrow sense if G1(t) =
· · · = Gm(t) ≡ 0. It is said to be autonomous if the coefficients F, f, Gk, gk

are all independent of t.
Throughout this chapter we shall assume that F, f, Gk, gk are all Borel-

measurable and bounded on [t0, T ]. Therefore, by the existence-and-uniqueness
Theorem 2.3.1, the linear equation (1.3) has a unique continuous solution in
M2([t0, T ];Rd) for every initial value x(t0) = x0, which is Ft0-measurable and
belongs to L2(Ω; Rd). The aim of this chapter is to get, if possible, an explicit
expression for this solution.

3.2 STOCHASTIC LIOUVILLE’S FORMULA

Consider the linear stochastic differential equation

dx(t) = F (t)x(t)dt +
m∑

k=1

Gk(t)x(t)dBk(t) (2.1)

on [t0, T ]. As assumed,

F (t) = (Fij(t))d×d, Gk(t) = (Gk
ij(t))d×d

are all Borel-measurable and bounded. For every j = 1, · · · , d, let ej be the unit
column-vector in the xj-direction, i.e.

ej = (0, · · · , 0, 1︸ ︷︷ ︸
j

, 0, · · · , 0)T .

Let Φj(t) = (Φ1j(t), · · · ,Φdj(t))T be the solution of equation (2.1) with initial
value x(t0) = ej . Define the d× d matrix

Φ(t) = (Φ1(t), · · · ,Φd(t)) = (Φij(t))d×d.

We call Φ(t) the fundamental matrix of equation (2.1). It is useful to note that
Φ(t0) = the d× d identity matrix and

dΦ(t) = F (t)Φ(t)dt +
m∑

k=1

Gk(t)Φ(t)dBk(t). (2.2)

Equation (2.2) can also be expressed as follows: For 1 ≤ i, j ≤ d,

dΦij(t) =
d∑

l=1

Fil(t)Φlj(t)dt +
m∑

k=1

d∑
l=1

Gk
il(t)Φlj(t)dBk(t). (2.3)
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The following theorem shows that any solution of equation (2.1) can be expressed
in terms of Φ(t) and that is why Φ(t) is called the fundamental matrix.

Theorem 2.1 Given the initial value x(t0) = x0, the unique solution of equation
(2.1) is

x(t) = Φ(t)x0.

Proof. Clearly x(t0) = x0. Moreover, by (2.2),

dx(t) = dΦ(t)x0 = F (t)Φ(t)x0dt +
m∑

k=1

Gk(t)Φ(t)x0dBk(t)

= F (t)x(t)dt +
m∑

k=1

Gk(t)x(t)dBk(t).

So x(t) is a solution to equation (2.1). But by the existence-and-uniqueness
theorem, equation (2.1) has only one solution. Hence the x(t) must be the
unique one.

We now denote by W (t) the determinant of the fundamental matrix Φ(t),
that is

W (t) = det.Φ(t).

We call W (t) the stochastic Wronskian determinant . Obviously, W (t0) = 1.
Moreover, we have the following stochastic Liouville formula.

Theorem 2.2 The stochastic Wronskian determinant W (t) has the explicit
expression

W (t) = exp
[ ∫ t

t0

(
traceF (s)− 1

2

m∑
k=1

trace[Gk(s)Gk(s)]
)
ds

+
m∑

k=1

∫ t

t0

traceGk(s)dBk(s)
]
. (2.4)

We prepare a lemma.

Lemma 2.3 Let a(·), bk(·) be real-valued Borel measurable bounded functions
on [t0, T ]. Then

y(t) = y0 exp
[∫ t

t0

(
a(s)− 1

2

m∑
k=1

b2
k(s)

)
ds +

m∑
k=1

∫ t

t0

bk(s)dBk(s)
]

(2.5)

is the unique solution to the scalar linear stochastic differential equation

dy(t) = a(t)y(t)dt +
m∑

k=1

bk(t)y(t)dBk(t) (2.6)



94 Linear Stochastic Differential Equations [Ch.3

on [t0, T ] with initial value y(t0) = y0.

Proof. Set

ξ(t) =
∫ t

t0

(
a(s)− 1

2

m∑
k=1

b2
k(s)

)
ds +

m∑
k=1

∫ t

t0

bk(s)dBk(s).

One can then write
y(t) = y0e

ξ(t).

Clearly, y(t0) = y0. Moreover, by Itô’s formula,

dy(t) = y(t)
[(

a(t)− 1
2

m∑
k=1

b2
k(t)

)
dt +

m∑
k=1

bk(t)dBk(t)
]

+
1
2
y(t)

m∑
k=1

b2
k(t)dt

= a(t)y(t)dt +
m∑

k=1

bk(t)y(t)dBk(t).

In other words, y(t) is a solution to equation (2.6) satisfying the initial condition.
But, by Theorem 2.3.1, equation (2.6) has only one solution. So y(t) must be
the unique one. The lemma has been proved.

Proof of Theorem 2.2. By Itô’s formula, one can show that

dW (t) =
d∑

i=1

ϕi +
∑

1≤i<j≤d

φij , (2.7)

where

ϕi =

∣∣∣∣∣∣∣∣∣∣∣∣

Φ11(t), · · · , Φ1d(t)
...

...
dΦi1(t), · · · , dΦid(t)

...
...

Φd1(t), · · · , Φdd(t)

∣∣∣∣∣∣∣∣∣∣∣∣
and

φi =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Φ11(t), · · · , Φ1d(t)
...

...
dΦi1(t), · · · , dΦid(t)

...
...

dΦj1(t), · · · , dΦjd(t)
...

...
Φd1(t), · · · , Φdd(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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It is not very difficult to verify by using (2.3) and the formal multiplication table
defined on page 36 that

ϕi = Fii(t)W (t)dt +
m∑

k=1

Gk
ii(t)W (t)dBk(t) (2.8)

and

φij =
m∑

k=1

[
Gk

ii(t)G
k
jj(t)−Gk

ij(t)G
k
ji(t)

]
W (t)dt. (2.9)

Substituting (2.8) and (2.9) into (2.7) yields that

dW (t) =
( d∑

i=1

Fii(t) +
m∑

k=1

∑
1≤i<j≤d

[
Gk

ii(t)G
k
jj(t)−Gk

ij(t)G
k
ji(t)

])
W (t)dt

+
m∑

k=1

d∑
i=1

Gk
ii(t)W (t)dBk(t). (2.10)

Applying Lemma 2.3 we get that

W (t) = exp
[∫ t

t0

( d∑
i=1

Fii(s) +
m∑

k=1

∑
1≤i<j≤d

[
Gk

ii(s)G
k
jj(s)−Gk

ij(s)G
k
ji(s)

])
ds

− 1
2

m∑
k=1

∫ t

t0

( d∑
i=1

Gk
ii(s)

)2

ds +
m∑

k=1

∫ t

t0

d∑
i=1

Gk
ii(s)dBk(s)

]
. (2.11)

Noting that

( d∑
i=1

Gk
ii(s)

)2

=
d∑

i=1

[
Gk

ii(s)
]2 + 2

∑
1≤i<j≤d

Gk
ii(s)G

k
jj(s),

we obtain immediately from (2.11) that

W (t) = exp
[∫ t

t0

d∑
i=1

Fii(s)ds +
m∑

k=1

∫ t

t0

d∑
i=1

Gk
ii(s)dBk(s)

−
m∑

k=1

∫ t

t0

(1
2

d∑
i=1

[
Gk

ii(s)
]2 +

∑
1≤i<j≤d

Gk
ij(s)G

k
ji(s)

)
ds

]
,

which is the required (2.4). The proof is complete.
The stochastic Liouville formula (2.4) implies directly that W (t) > 0 a.s.

for all t ∈ [t0, T ], which in turn implies that Φ(t) is invertible. We have therefore
obtained the following important result.
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Theorem 2.4 For all t ∈ [t0, T ], the fundamental matrix Φ(t) is invertible with
probability 1.

We shall denote by Φ−1(t) the inverse matrix of Φ(t).

3.3 THE VARIATION-OF-CONSTANTS FORMULA

Let us now turn to the general d-dimensional linear stochastic differential
equation

dx(t) = (F (t)x(t) + f(t))dt +
m∑

k=1

(Gk(t)x(t) + gk(t))dBk(t) (3.1)

on [t0, T ] with initial value x(t0) = x0. Equation (2.1) is called the correspond-
ing homogeneous equation of system (3.1). In this section we shall establish a
useful formula, called the variation-of-constants formula, which represents the
unique solution of equation (3.1) in terms of the fundamental matrix of the
corresponding homogeneous equation (2.1).

Theorem 3.1 The unique solution of equation (3.1) can be expressed as

x(t) = Φ(t)
(

x0 +
∫ t

t0

Φ−1(s)
[
f(s)−

m∑
k=1

Gk(s)gk(s)
]
ds

+
m∑

k=1

∫ t

t0

Φ−1(s)gk(s)dBk(s)
)

, (3.2)

where Φ(t) is the fundamental matrix of the corresponding homogeneous equation
(2.1).

Proof. Set

ξ(t) = x0 +
∫ t

t0

Φ−1(s)
[
f(s)−

m∑
k=1

Gk(s)gk(s)
]
ds

+
m∑

k=1

∫ t

t0

Φ−1(s)gk(s)dBk(s).

Then ξ(t) has the differential

dξ(t) = Φ−1(t)
[
f(t)−

m∑
k=1

Gk(t)gk(t)
]
dt

+
m∑

k=1

Φ−1(t)gk(t)dBk(t). (3.3)
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Let
η(t) = Φ(t)ξ(t). (3.4)

Clearly, η(t0) = x0. Moreover, by Itô’s formula

dη(t) = dΦ(t)ξ(t) + Φ(t)dξ(t) + dΦ(t)dξ(t).

Substituting (2.2) and (3.3) into it and using the formal multiplication table
defined on page 36, we derive that

dη(t) = F (t)η(t)dt +
m∑

k=1

Gk(t)η(t)dBk(t)

+
[
f(t)−

m∑
k=1

Gk(t)gk(t)
]
dt +

m∑
k=1

gk(t)dBk(t)

+
(
F (t)Φ(t)dt +

m∑
k=1

Gk(t)Φ(t)dBk(t)
)

×
(
Φ−1(t)f(t)dt +

m∑
k=1

Φ−1(t)gk(t)dBk(t)−
m∑

k=1

Φ−1(t)Gk(t)gk(t)dt
)

= (F (t)η(t) + f(t))dt +
m∑

k=1

(Gk(t)η(t) + gk(t))dBk(t).

In other words, we have shown that η(t) is a solution to equation (3.1) satisfying
the initial condition η(t0) = x0. On the other hand, equation (3.1) has only one
solution x(t). So we must have that x(t) = η(t), which is the required formula
(3.2). The proof is complete.

Since we assume that x0 ∈ L2(Ω; Rd), the first and second moments of the
solution of equation (3.1) exist and are finite. The following theorem shows that
one can obtain first and second moments by solving the corresponding linear
ordinary differential equations.

Theorem 3.2 For the solution of equation (3.1), we have:
(a) m(t) := Ex(t) is the unique solution of the equation

ṁ(t) = F (t)m(t) + f(t) (3.5)

on [t0, T ] with initial value m(t0) = Ex0.
(b) P (t) := E(x(t)xT (t)) is the unique nonnegative-definite symmetric solution

of the equation

Ṗ (t) = F (t)P (t) + P (t)FT (t) + f(t)mT (t) + m(t)fT (t)

+
m∑

k=1

[
Gk(t)P (t)GT

k (t) + Gk(t)m(t)gT
k (t)

+ gk(t)mT (t)GT
k (t) + gk(t)gT

k (t)
]

(3.6)
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on [t0, T ] with initial value P (t0) = E(x0x
T
0 ). Note that (3.6) represents a

system of d(d + 1)/2 linear equations.

Proof. (a) Note that

x(t) = x(t0) +
∫ t

t0

(F (s)x(s) + f(s))ds +
m∑

k=1

∫ t

t0

(Gk(s)x(s) + gk(s))dBk(s).

Taking the expectation on both sides yields

m(t) = m(t0) +
∫ t

t0

(F (s)m(s) + f(s))ds

which is the integral form of equation (3.5). So the conclusion of part (a) follows.
(b) By Itô’s formula,

d[x(t)xT (t)] = dx(t)xT (t) + x(t)dxT (t)

+
m∑

k=1

[Gk(t)x(t) + gk(t)][Gk(t)x(t) + gk(t)]T dt

=
(

F (t)x(t)xT (t) + f(t)xT (t) + x(t)xT (t)FT (t) + x(t)fT (t)

+
m∑

k=1

[
Gk(t)x(t)xT (t)GT

k (t) + gk(t)xT (t)GT
k (t)

+ Gk(t)x(t)gT
k (t) + gk(t)gT

k (t)
])

dt

+
m∑

k=1

[
(Gk(t)x(t) + gk(t))xT (t) + x(t)(Gk(t)x(t) + gk(t))T

]
dBk(t).

Now equation (3.6) follows by taking the expectation on both sides of the integral
form of the above equality. Since P (t) is the covariance matrix of x(t), it is of
course nonnegative-definite and symmetric. The proof is complete.

Theorem 3.1 tells us that we can have the explicit solution to the linear
equation (3.1) provided we know the corresponding fundamental matrix Φ(t).
Although we can not obtain the explicit fundamental matrix Φ(t) for every case,
we can for several important cases and let us turn to these case studies.

3.4 CASE STUDIES

(i) Scalar Linear Equations

We first consider the general scalar linear stochastic differential equation

dx(t) = (a(t)x(t) + ā(t))dt +
m∑

k=1

(bk(t)x(t) + b̄k(t))dBk(t) (4.1)
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on [t0, T ] with initial value x(t0) = x0. Here x0 ∈ L2(Ω; R) is Ft0-measurable,
and a(t), ā(t), bk(t), b̄k(t) are Borel-measurable bounded scalar functions on
[t0, T ]. The corresponding homogeneous linear equation is

dx(t) = a(t)x(t)dt +
m∑

k=1

bk(t)x(t)dBk(t). (4.2)

By Lemma 2.3, the fundamental solution of equation (4.2) is given by

Φ(t) = exp
[∫ t

t0

(
a(s)− 1

2

m∑
k=1

b2
k(s)

)
ds +

m∑
k=1

∫ t

t0

bk(s)dBk(s)
]
.

Applying Theorem 3.1, we then obtain the explicit solution of equation (4.1)

x(t) = Φ(t)
(

x0 +
∫ t

t0

Φ−1(s)
[
ā(s)−

m∑
k=1

bk(s)b̄k(s)
]
ds

+
m∑

k=1

∫ t

t0

Φ−1(s)b̄k(s)dBk(s)
)

. (4.3)

(ii) Linear Equations in the Narrow Sense

We next consider the d-dimensional linear stochastic differential equation
in the narrow sense

dx(t) = (F (t)x(t) + f(t))dt +
m∑

k=1

gk(t)dBk(t) (4.4)

on [t0, T ] with initial value x(t0) = x0, where F, f, gk and x0 are the same as
defined in Section 3.1. The corresponding homogeneous linear equation is now
the ordinary differential equation

ẋ(t) = F (t)x(t). (4.5)

Again, let Φ(t) be the fundamental matrix of equation (4.5). Then the solution
of equation (4.4) has the form

x(t) = Φ(t)
(

x0 +
∫ t

t0

Φ−1(s)f(s)ds +
m∑

k=1

∫ t

t0

Φ−1(s)gk(s)dBk(s)
)

. (4.6)

In particular, when F (t) is independent of t, i.e. F (t) = F a d × d constant
matrix, the fundamental matrix Φ(t) has the simple form Φ(t) = eF (t−t0) and
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its inverse matrix Φ−1(t) = e−F (t−t0). Therefore, in the case when F (t) = F ,
equation (4.4) has the explicit solution

x(t) = eF (t−t0)

(
x0 +

∫ t

t0

e−F (s−t0)f(s)ds +
m∑

k=1

∫ t

t0

e−F (s−t0)gk(s)dBk(s)
)

= eF (t−t0)x0 +
∫ t

t0

eF (t−s)f(s)ds +
m∑

k=1

∫ t

t0

eF (t−s)gk(s)dBk(s). (4.7)

(iii) Autonomous Linear Equations

We now consider the d-dimensional autonomous linear stochastic differen-
tial equation

dx(t) = (Fx(t) + f)dt +
m∑

k=1

(Gkx(t) + gk)dBk(t) (4.8)

on [t0, T ] with initial value x(t0) = x0, where F, Gk ∈ Rd×d and f, gk ∈ Rd.
The corresponding homogeneous equation is

dx(t) = Fx(t)dt +
m∑

k=1

Gkx(t)dBk(t). (4.9)

In general, the fundamental matrix Φ(t) can not be given explicitly. However, if
the matrices F,G1, · · · , Gm commute, that is, if

FGk = GkF, GkGj = GjGk for all 1 ≤ k, j ≤ m, (4.10)

then the fundamental matrix of equation (4.9) has the explicit form

Φ(t) = exp
[(

F − 1
2

m∑
k=1

G2
k

)
(t− t0) +

m∑
k=1

Gk(Bk(t)−Bk(t0))
]
. (4.11)

To show this, set

Y (t) =
(
F − 1

2

m∑
k=1

G2
k

)
(t− t0) +

m∑
k=1

Gk(Bk(t)−Bk(t0)).

We can then write
Φ(t) = exp(Y (t)).

By condition (4.10) we compute the stochastic differential

dΦ(t) = exp(Y (t))dY (t) +
1
2

exp(Y (t))(dY (t))2

= Φ(t)dY (t) +
1
2
Φ(t)

( m∑
k=1

G2
k

)
dt

= FΦ(t)dt +
m∑

k=1

GkΦ(t)dBk(t).
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That is, Φ(t) satisfies the homogeneous equation and hence is the fundamental
matrix. Finally, we apply Theorem 3.1 to conclude that under condition (4.10),
the autonomous linear equation (4.8) has the explicit solution

x(t) = Φ(t)
[
x0 +

(∫ t

t0

Φ−1(s)ds
)(

f −
m∑

k=1

Gkgk

)
+

m∑
k=1

(∫ t

t0

Φ−1(s)dBk(s)
)
gk

]
. (4.12)

3.5 EXAMPLES

In this section we shall investigate several important stochastic processes
which are described by linear stochastic differential equations. Throughout this
section, we let B(t) be a 1-dimensional Brownian motion.

Example 5.1 (The Ornstein–Uhlenbeck process) We shall first discuss the
historically oldest example of a stochastic differential equation. The Langevin
equation

ẋ(t) = −αx(t) + σḂ(t) on t ≥ 0 (5.1)

has been used to describe the motion of a particle under the influence of friction
but no other force field (cf. Uhlenbeck & Ornstein (1930)). Here α > 0 and σ
are constants, x(t) is one of the three scalar velocity components of the particle
and Ḃ(t) is a scalar white noise. The corresponding Itô equation

dx(t) = −αx(t)dt + σdB(t) on t ≥ 0 (5.2)

is an autonomous linear equation in the narrow sense. Assume that the initial
value x(0) = x0 is F0-measurable and belongs to L2(Ω; R). In view of (4.7), the
unique solution of equation (5.2) is

x(t) = e−αtx0 + σ

∫ t

0

e−α(t−s)dB(s). (5.3)

It has the mean
Ex(t) = e−αtEx0

and the variance

V ar(x(t)) = E|x(t)− Ex(t)|2

= e−2αtE|x0 − Ex0|2 + σ2e−2αtE
∣∣∣∫ t

0

eαsdB(s)
∣∣∣2

= e−2αtV ar(x0) + σ2e−2αtE

∫ t

0

e2αsds

= e−2αtV ar(x0) +
σ2

2α
(1− e−2αt).
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Note that for arbitrary x0,

lim
t→∞

e−αtx0 = 0 a.s.

and σ
∫ t

0
e−α(t−s)dB(s) follows the normal distribution N(0, σ2(1− e−2αt)/2α).

So the distribution of the solution x(t) approaches the normal distribution
N(0, σ2/2α) as t → ∞ for arbitrary x0. If x0 is normally distributed or con-
stant, then the solution x(t) is a Gaussian process (i.e. normally distributed
process), and is called the Ornstein–Uhlenbeck velocity process. If start with
an N(0, σ2/2α)-distributed x0, then x(t) follows the same normal distribution
N(0, σ2/2α) so the solution is a stationary Gaussian process, which is sometimes
called a coloured noise.

Now assume that the particle starts from the initial position y0, which is
F0-measurable and belongs to L2(Ω; R) as well. Then , by integration of the
velocity x(t), we obtain the position

y(t) = y0 +
∫ t

0

x(s)ds (5.4)

of the particle at time t. If y0 and x0 are normally distributed or constant, then
y(t) is a Gaussian process, the so-called Ornstein–Uhlenbeck position process. Of
course, we can treat x(t) and y(t) simultaneously by combining equations (5.2)
and (5.4) into the 2-dimensional linear stochastic differential equation

d

(
x(t)
y(t)

)
=
(
−α 0
1 0

)(
x(t)
y(t)

)
dt +

(
σ
0

)
dB(t). (5.5)

It is easy to obtain the corresponding fundamental matrix

Φ(t) =
(

e−αt 0
(1− e−αt)/α 1

)
with the property Φ(t)Φ−1(s) = Φ(t − s). Therefore, according to (4.7), the
solution of equation (5.5) is(

x(t)
y(t)

)
= Φ(t)

(
x0

y0

)
+
∫ t

0

Φ(t− s)
(

σ
0

)
dB(t).

This implies

x(t) = e−αtx0 + σ

∫ t

0

e−α(t−s)dB(s)

the same as (5.3), and

y(t) =
1
α

(1− e−αt)x0 + y0 +
σ

α

∫ t

0

[
1− e−α(t−s)

]
dB(s), (5.6)
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which is in fact the same as (5.4) (we leave the verification to the reader). It
then follows from (5.6) that y(t) has the mean

Ey(t) =
1
α

(1− e−αt)Ex0 + Ey0

and the variance

V ar(y(t)) =
1
α2

(1− e−αt)2V ar(x0) +
2
α

(1− e−αt)Cov(x0, y0) + V ar(y0)

+
σ2

α2

[
t− 2

α
(1− e−αt) +

1
2α

(1− e−2αt)
]
.

Example 5.2 (The mean-reverting Ornstein–Uhlenbeck process) If we
revert the Langevin equation (5.2) by mean, we arrive at the following equation

dx(t) = −α(x(t)− µ)dt + σdB(t) on t ≥ 0 (5.7)

with initial value x(0) = x0, where µ is a constant. Its solution is called the
mean-reverting Ornstein–Uhlenbeck process and has the form

x(t) = e−αt
(
x0 + αµ

∫ t

0

eαsds + σ

∫ t

0

eαsdB(s)
)

= e−αtx0 + µ(1− e−αt) + σ

∫ t

0

e−α(t−s)dB(s). (5.8)

We therefore obtain that the mean

Ex(t) = e−αtEx0 + µ(1− e−αt)→ µ as t→∞

and the variance

V ar(x(t)) = e−2αtV ar(x0) +
σ2

2α
(1− e−2αt)→ σ2

2α
as t→∞.

It also follows from (5.8) that the distribution of the solution x(t) approaches the
normal distribution N(µ, σ2/2α) as t → ∞ for arbitrary x0. If x0 is normally
distributed or constant, then the solution x(t) is a Gaussian process. If x0 follows
the normal distribution N(µ, σ2/2α), so does the solution x(t) for all t ≥ 0.

Example 5.3 (The Brownian motion on the unit circle) Consider the
2-dimensional linear stochastic differential equation

dx(t) = −1
2
x(t)dt + Kx(t)dB(t) on t ≥ 0 (5.9)

with initial value x(0) = (1, 0)T , where

K =
(

0 −1
1 0

)
.
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In view of (4.11), the corresponding fundamental matrix is

Φ(t) = exp
[(
−1

2
I − 1

2
K2
)
t + KB(t)

]
,

where I is the 2× 2 identity matrix. Noting that K2 = −I, we obtain

Φ(t) = exp
[
KB(t)

]
=

∞∑
n=0

KnBn(t)
n!

.

But
K2n = (−1)nI and K2n+1 = (−1)nK for n = 0, 1, · · · .

Thus

Φ(t) =
∞∑

n=0

[
K2nB2n(t)

(2n)!
+

K2n+1B2n+1(t)
(2n + 1)!

]

=
∞∑

n=0

[
(−1)nB2n(t)I

(2n)!
+

(−1)nB2n+1(t)K
(2n + 1)!

]
.

Now, by (4.12), the unique solution of equation (5.9) is

x(t) = Φ(t)
(

1
0

)
=

( ∑∞
n=0

(−1)nB2n(t)
(2n)!∑∞

n=0
(−1)nB2n+1(t)

(2n+1)!

)
=
(

cos B(t)
sinB(t)

)
,

and this is the Brownian motion on the unit circle (see Example 2.2.3).

Example 5.4 (The Brownian bridge) Let a, b be two constants. Consider
the 1-dimensional linear equation

dx(t) =
b− x(t)
1− t

dt + dB(t) on t ∈ [0, 1) (5.10)

with initial value x(0) = a. The corresponding fundamental solution is

Φ(t) = exp
[
−
∫ t

0

ds

1− s

]
= exp

[
log(1− t)

]
= 1− t.

Hence, by (4.3), the solution of equation (5.10) is

x(t) = (1− t)
(

a + b

∫ t

0

ds

(1− s)2
+
∫ t

0

dB(s)
1− s

)
= (1− t)a + bt + (1− t)

∫ t

0

dB(s)
1− s

. (5.11)
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The solution is called the Brownian bridge from a to b. It is a Gaussian process
with mean

Ex(t) = (1− t)a + bt

and variance
V ar(x(t)) = t(1− t).

Example 5.5 (The geometric Brownian motion) The geometric Brownian
motion is the solution to the 1-dimensional linear equation

dx(t) = αx(t)dt + σx(t)dB(t) on t ≥ 0, (5.12)

where α, σ are constants. Given the initial value x(0) = x0, the solution of the
equation is

x(t) = x0 exp
[(

α− σ2

2

)
t + σB(t)

]
. (5.13)

If x0 6= 0 a.s., then, by the law of the iterated logarithm (i.e. Theorem 1.4.2),
we obtain from (5.13) that

α <
σ2

2
⇐⇒ lim

t→∞
x(t) = 0 a.s.

α =
σ2

2
⇐⇒ lim sup

t→∞
|x(t)| =∞ and lim inf

t→∞
|x(t)| = 0 a.s.

α >
σ2

2
⇐⇒ lim

t→∞
|x(t)| =∞ a.s.

(5.14)

We now let p > 0 and x0 ∈ Lp with E|x0|p 6= 0. It follows from (5.13) that

E|x(t)|p = E

(
|x0|p exp

[
p
(
α− σ2

2

)
t + pσB(t)

])
= exp

[
p
(
α− (1− p)σ2

2

)
t

]
E

(
|x0|p exp

[
−p2σ2

2
t + pσB(t)

])
. (5.15)

Set

ξ(t) = |x0|p exp
[
−p2σ2

2
t + pσB(t)

]
.

It is the unique solution to the equation

dξ(t) = pσξ(t)dB(t)

with initial value ξ(0) = |x0|p. Hence

ξ(t) = |x0|p + pσ

∫ t

0

ξ(s)dB(s)
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which yields that Eξ(t) = E|x0|p. Substituting this into (5.15) gives

E|x(t)|p = exp
[
p
(
α− (1− p)σ2

2

)
t

]
E|x0|p.

Consequently

α <
(1− p)σ2

2
⇐⇒ lim

t→∞
E|x(t)|p = 0,

α =
(1− p)σ2

2
⇐⇒ E|x(t)|p = E|x0|p for all t ≥ 0,

α >
(1− p)σ2

2
⇐⇒ lim

t→∞
E|x(t)|p =∞.

(5.16)

Example 5.6 (Equations driven by a coloured noise) Instead of a white
noise, it is often to use a coloured noise to describe stochastic perturbations. For
example, consider the linear equation driven by a coloured noise

dx(t) = ax(t)dt + by(t)dt on t ≥ 0 (5.17)

with initial value x(0) = x0, where y(t) is the coloured noise, i.e. the solution
to the equation

dy(t) = −αy(t) + σdB(t) on t ≥ 0 (5.18)

with initial value y(0) = y0 ∼ N(0, σ2/2α). We now treat x(t) and y(t) simulta-
neously by combining equations (5.17) and (5.18) into the 2-dimensional linear
stochastic differential equation

d

(
x(t)
y(t)

)
= F

(
x(t)
y(t)

)
dt +

(
0
σ

)
dB(t), (5.19)

where

F =
(

a b
0 −α

)
.

Hence the solution is(
x(t)
y(t)

)
= eFt

(
x0

y0

)
+
∫ t

0

eF (t−s)

(
0
σ

)
dB(s).
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Stability of

Stochastic Di�erential Equations

4.1 INTRODUCTION

In 1892, A.M. Lyapunov introduced the concept of stability of a dynamic system.
Roughly speaking, the stability means insensitivity of the state of the system to
small changes in the initial state or the parameters of the system. For a stable
system, the trajectories which are “close” to each other at a specific instant
should therefore remain close to each other at all subsequent instants.

To make the stochastic stability theory more understandable, let us recall
a few basic facts on the theory of stability of deterministic systems described
by ordinary differential equations. For the details please see Hahn (1967) and
Lakshmikantham et al. (1989). Consider a d-dimensional ordinary differential
equation

ẋ(t) = f(x(t), t) on t ≥ t0. (1.1)

Assume that for every initial value x(t0) = x0 ∈ Rd, there exists a unique global
solution which is denoted by x(t; t0, x0). Assume furthermore that

f(0, t) = 0 for all t ≥ t0.

So equation (1.1) has the solution x(t) ≡ 0 corresponding to the initial value
x(t0) = 0. This solution is called the trivial solution or equilibrium position.
The trivial solution is said to be stable if, for every ε > 0, there exists a δ =
δ(ε, t0) > 0 such that

|x(t; t0, x0)| < ε for all t ≥ t0

107
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whenever |x0| < δ. Otherwise, it is said to be unstable. The trivial solution is
said to be asymptotically stable if it is stable and if there exists a δ0 = δ0(t0) > 0
such that

lim
t→∞

x(t; t0, x0) = 0

whenever |x0| < δ0.
If equation (1.1) can be solved explicitly, it would be rather easy to deter-

mine whether the trivial solution is stable. However, equation (1.1) can only
be solved explicitly in some special cases. Fortunately, Lyapunov in 1892 devel-
oped a method for determining stability without solving the equation, and this
method is now known as the Lyapunov direct or second method. To explain the
method, let us introduce a few necessary notations. Let K denote the family of
all continuous nondecreasing functions µ : R+ → R+ such that µ(0) = 0 and
µ(r) > 0 if r > 0. For h > 0, let Sh = {x ∈ Rd : |x| < h}. A continuous function
V (x, t) defined on Sh × [t0,∞) is said to be positive-definite (in the sense of
Lyapunov) if V (0, t) ≡ 0 and, for some µ ∈ K,

V (x, t) ≥ µ(|x|) for all (x, t) ∈ Sh × [t0,∞).

A function V is said to be negative-definite if −V is positive-definite. A con-
tinuous non-negative function V (x, t) is said to be decrescent (i.e. to have an
arbitrarily small upper bound) if for some µ ∈ K,

V (x, t) ≤ µ(|x|) for all (x, t) ∈ Sh × [t0,∞).

A function V (x, t) defined on Rd × [t0,∞) is said to be radially unbounded if

lim
|x|→∞

inf
t≥t0

V (x, t) = ∞.

Let C1,1(Sh × [t0,∞);R+) denote the family of all continuous functions V (x, t)
from Sh × [t0,∞) to R+ with continuous first partial derivatives with respect
to every component of x and to t. Let x(t) be a solution of equation (1.1) and
V (x, t) ∈ C1,1(Sh× [t0,∞);R+). Then v(t) = V (x(t), t) represents a function of
t with the derivative

v̇(t) = Vt(x(t), t) + Vx(x(t), t)f(x(t), t)

=
∂V

∂t
(x(t), t) +

d∑
i=1

∂V

∂xi
(x(t), t)fi(x(t), t).

If v̇(t) ≤ 0, then v(t) will not increase so the “distance” of x(t) from the equilib-
rium point measured by V (x(t), t) does not increase. If v̇(t) < 0, then v(t) will
decrease to zero so the distance will decrease to zero, that is x(t) → 0. These
are the basic ideas of the Lyapunov direct method and lead to the following
well-known Lyapunov theorem.
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Theorem 1.1 (i) If there exists a positive-definite function V (x, t) ∈ C1,1(Sh×
[t0,∞);R+) such that

V̇ (x, t) := Vt(x(t), t) + Vx(x(t), t)f(x(t), t) ≤ 0

for all (x, t) ∈ Sh × [t0,∞), then the trivial solution of equation (1.1) is stable.
(ii) If there exists a positive-definite decrescent function V (x, t) ∈ C1,1(Sh×

[t0,∞);R+) such that V̇ (x, t) is negative-definite, then the trivial solution of
equation (1.1) is asymptotically stable.

A function V (x, t) that satisfies the stability conditions of Theorem 1.1 is
called a Lyapunov function corresponding to the ordinary differential equation.

When we try to carry over the principles of the Lyapunov stability theory
for deterministic systems to stochastic ones, we face the following problems:

· What is a suitable definition of stochastic stability?
· What conditions should a stochastic Lyapunov function satisfy?
· With what should the inequality V̇ (x, t) ≤ 0 be replaced in order to get

stability assertions?
It turns out that there are at least three different types of stochastic stability:
stability in probability, moment stability and almost sure stability. In 1965,
Bucy recognized that a stochastic Lyapunov function should have the super-
martingale property and gave surprisingly simple sufficient criteria for stability
in probability as well as for moment stability. Almost sure stability was consid-
ered by Has’minskii (1967) for linear stochastic differential equations. Stochastic
stability has been one of the most active areas in stochastic analysis and many
mathematicians have devoted their interests to it. We here mention Arnold, Bax-
endale, Chow, Curtain, Elworthy, Friedman, Ichikawa, Kliemann, Kolmanovskii,
Kushner, Ladde, Lakshmikantham, Mohammed, Pardoux, Pinsky, Pritchard,
Truman, Wihstutz, Zabczyk and myself among others.

In this chapter we shall investigate various types of stability for the d-
dimensional stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t ≥ t0. (1.2)

For the stability purpose of this chapter, it is enough (we shall explain why
later) to consider the constant initial value x0 ∈ Rd only, instead of the Ft0-
measurable random variable x0 ∈ L2(Ω; Rd). Throughout this chapter we shall
assume that the assumptions of the existence-and-uniqueness Theorem 2.3.6 are
fulfilled. Hence, for any given initial value x(t0) = x0 ∈ Rd, equation (1.2)
has a unique global solution that is denoted by x(t; t0, x0). We know that the
solution has continuous sample paths and its every moment is finite. Assume
furthermore that

f(0, t) = 0 and g(0, t) = 0 for all t ≥ t0.
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So equation (1.2) has the solution x(t) ≡ 0 corresponding to the initial value
x(t0) = 0. This solution is called the trivial solution or equilibrium position.

Besides, we shall need a few more notations. Let 0 < h ≤ ∞. Denote by
C2,1(Sh × R+;R+) the family of all nonnegative functions V (x, t) defined on
Sh ×R+ such that they are continuously twice differentiable in x and once in t.
Define the differential operator L associated with equation (1.2) by

L =
∂

∂t
+

d∑
i=1

fi(x, t)
∂

∂xi
+

1
2

d∑
i,j=1

[g(x, t)gT (x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Sh ×R+;R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f(x, t) +
1
2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
.

(See page 31 for the definition of Vt, Vx and Vxx). By Itô’s formula, if x(t) ∈ Sh,
then

dV (x(t), t) = LV (x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t)

and this explains why the differential operator L is defined as above. We shall
see that the inequality V̇ (x, t) ≤ 0 will be replaced by LV (x, t) ≤ 0 in order to
get the stochastic stability assertions.

4.2 STABILITY IN PROBABILITY

In this section, we shall discuss the stability in probability. Let us stress
that throughout this chapter, we shall let the initial value x0 be a constant (in
Rd) but not a random variable. We shall explain why we need only discuss this
case of constant initial values after the definition of stability in probability.

Definition 2.1 (i) The trivial solution of equation (1.2) is said to be stochasti-
cally stable or stable in probability if for every pair of ε ∈ (0, 1) and r > 0, there
exists a δ = δ(ε, r, t0) > 0 such that

P{|x(t; t0, x0)| < r for all t ≥ t0} ≥ 1− ε

whenever |x0| < δ. Otherwise, it is said to be stochastically unstable.
(ii) The trivial solution is said to be stochastically asymptotically stable

if it is stochastically stable and, moreover, for every ε ∈ (0, 1), there exists a
δ0 = δ0(ε, t0) > 0 such that

P{ lim
t→∞

x(t; t0, x0) = 0} ≥ 1− ε

whenever |x0| < δ0.
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(iii) The trivial solution is said to be stochastically asymptotically stable in
the large if it is stochastically stable and, moreover, for all x0 ∈ Rd

P{ lim
t→∞

x(t; t0, x0) = 0} = 1.

Let us now explain why we need only to discuss the case of constant initial
values. Suppose one would like to let the initial value x0 be a random variable.
He then should replace e.g. “|x0| < δ” by “|x0| < δ a.s.” in the definition
accordingly. This seems more general but is in fact equivalent to the above
definition. For example, suppose we have (i), then for any random variable x0

with |x0| < δ a.s., we have

P{|x(t; t0, x0)| < r for all t ≥ t0}

=
∫

Sδ

P{|x(t; t0, y)| < r for all t ≥ t0}P{x0 ∈ dy}

≥
∫

Sδ

(1− ε)P{x0 ∈ dy} = 1− ε.

It should also be pointed out that when g(x, t) ≡ 0, these definitions reduce to
the corresponding deterministic ones. We now extend the Lyapunov Theorem
1.1 to the stochastic case.

Theorem 2.2 If there exists a positive-definite function V (x, t) ∈ C2,1(Sh ×
[t0,∞);R+) such that

LV (x, t) ≤ 0

for all (x, t) ∈ Sh× [t0,∞), then the trivial solution of equation (1.2) is stochas-
tically stable.

Proof. By the definition of a positive-definite function, we know that V (0, t) ≡ 0
and there is a function µ ∈ K such that

V (x, t) ≥ µ(|x|) for all (x, t) ∈ Sh × [t0,∞). (2.1)

Let ε ∈ (0, 1) and r > 0 be arbitrary. Without loss of generality we may assume
that r < h. By the continuity of V (x, t) and the fact V (0, t0) = 0, we can find
a δ = δ(ε, r, t0) > 0 such that

1
ε

sup
x∈Sδ

V (x, t0) ≤ µ(r). (2.2)

It is easy to see that δ < r. Now fix the initial value x0 ∈ Sδ arbitrarily and
write x(t; t0, x0) = x(t) simply. Let τ be the first exit time of x(t) from Sr, that
is

τ = inf{t ≥ t0 : x(t) /∈ Sr}.

郑亮
Highlight



112 Stability of Stochastic Differential Equations [Ch.4

By Itô’s formula, for any t ≥ t0,

V (x(τ ∧ t), τ ∧ t) = V (x0, t0) +
∫ τ∧t

t0

LV (x(s), s)ds

+
∫ τ∧t

t0

Vx(x(s), s)g(x(s), s)dB(s).

Taking the expectation on both sides and making use of the condition LV ≤ 0,
we obtain that

EV (x(τ ∧ t), τ ∧ t) ≤ V (x0, t0). (2.3)

Note that |x(τ ∧ t)| = |x(τ)| = r if τ ≤ t. Hence, by (2.1),

EV (x(τ ∧ t), τ ∧ t) ≥ E
[
I{τ≤t}V (x(τ), τ)

]
≥ µ(r)P{τ ≤ t}.

This, together with (2.3) and (2.2), implies

P{τ ≤ t} ≤ ε.

Letting t →∞ we get P{τ < ∞} ≤ ε, that is

P{|x(t)| < r for all t ≥ t0} ≥ 1− ε

as required.

Theorem 2.3 If there exists a positive-definite decrescent function V (x, t) ∈
C2,1(Sh × [t0,∞);R+) such that LV (x, t) is negative-definite, then the trivial
solution of equation (1.2) is stochastically asymptotically stable.

Proof. We know from Theorem 2.2 that the trivial solution is stochastically
stable. So we only need to show that for any ε ∈ (0, 1), there is a δ0 = δ0(ε, t0) >
0 such that

P{ lim
t→∞

x(t; t0, x0) = 0} ≥ 1− ε (2.4)

whenever |x0| < δ0. Note that the assumptions on function V (x, t) mean that
V (0, t) ≡ 0 and, moreover, there are three functions µ1, µ2, µ3 ∈ K such that

µ1(|x|) ≤ V (x, t) ≤ µ2(|x|) and LV (x, t) ≤ −µ3(|x|) (2.5)

for all (x, t) ∈ Sh × [t0,∞). Fix ε ∈ (0, 1) arbitrarily. By Theorem 2.2, there is
a δ0 = δ0(ε, t0) > 0 such that

P{|x(t; t0, x0)| < h/2} ≥ 1− ε

4
(2.6)

whenever x0 ∈ Sδ0 . Fix any x0 ∈ Sδ0 and write x(t; t0, x0) = x(t) simply. Let
0 < β < |x0| be arbitrary, and choose 0 < α < β sufficiently small for

µ2(α)
µ1(β)

≤ ε

4
. (2.7)

郑亮
Highlight
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Define the stopping times

τα = inf{t ≥ t0 : |x(t)| ≤ α}

and
τh = inf{t ≥ t0 : |x(t)| ≥ h/2}.

By Itô’s formula and (2.5), we can derive that for any t ≥ t0,

0 ≤ EV (x(τα ∧ τh ∧ t), τα ∧ τh ∧ t)

= V (x0, t0) + E

∫ τα∧τh∧t

t0

LV (x(s), s)ds

≤ V (x0, t0)− µ3(α)E(τα ∧ τh ∧ t− t0).

Consequently

(t− t0)P{τα ∧ τh ≥ t} ≤ E(τα ∧ τh ∧ t− t0) ≤
V (x0, t0)

µ3(α)
.

This implies immediately that

P{τα ∧ τh < ∞} = 1.

But, by (2.6), P{τh < ∞} ≤ ε/4. Hence

1 = P{τα ∧ τh < ∞} ≤ P{τα < ∞}+ P{τh < ∞} ≤ P{τα < ∞}+
ε

4
,

which yields
P{τα < ∞} ≥ 1− ε

4
. (2.8)

Choose θ sufficiently large for

P{τα < θ} ≥ 1− ε

2
.

Then

P{τα < τh ∧ θ} ≥ P ({τα < θ} ∩ {τh = ∞})

≥ P{τα < θ} − P{τh < ∞} ≥ 1− 3ε

4
. (2.9)

Now, define two stopping times

σ =
{

τα if τα < τh ∧ θ,
∞ otherwise

and
τβ = inf{t > σ : |x(t)| ≥ β}.
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We can then show by Itô’s formula that for any t ≥ θ,

EV (x(τβ ∧ t), τβ ∧ t) ≤ EV (x(σ ∧ t), σ ∧ t).

Noting that V (x(τβ ∧ t), τβ ∧ t) = V (x(σ ∧ t), σ ∧ t) = V (x(t), t) on ω ∈ {τα ≥
τh ∧ θ}, we get

E
[
I{τα<τh∧θ}V (x(τβ ∧ t), τβ ∧ t)

]
≤ E

[
I{τα<τh∧θ}EV (x(τα), τα)

]
.

Using (2.6) and the fact {τβ ≤ t} ⊂ {τα < τh ∧ θ} we further obtain

µ1(β)P{τβ ≤ t} ≤ µ2(α).

This, together with (2.7), yields

P{τβ ≤ t} ≤ ε

4
.

Letting t →∞ we have
P{τβ < ∞} ≤ ε

4
.

It then follows, using (2.9) as well, that

P{σ < ∞ and τβ = ∞} ≥ P{τα < τh ∧ θ} − P{τβ < ∞} ≥ 1− ε.

But this means that

P{ω : lim sup
t→∞

|x(t)| ≤ β} ≥ 1− ε.

Since β is arbitrary, we must have

P{ω : lim sup
t→∞

x(t) = 0} ≥ 1− ε

as required. The proof is complete.

Theorem 2.4 If there exists a positive-definite decrescent radially unbounded
function V (x, t) ∈ C2,1(Rd× [t0,∞);R+) such that LV (x, t) is negative-definite,
then the trivial solution of equation (1.2) is stochastically asymptotically stable
in the large.

Proof. By Theorem 2.2, the trivial solution of equation is stochastically stable.
So we only need to show that

P{ lim
t→∞

x(t; t0, x0) = 0} = 1 (2.10)
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for all x0 ∈ Rd. Fix any x0 and write x(t; t0, x0) = x(t) again. Let ε ∈ (0, 1) be
arbitrary. Since V (x, t) is radially unbounded, we can find an h > |x0| sufficiently
large for

inf
|x|≥h,t≥t0

V (x, t) ≥ 4V (x0, t0)
ε

. (2.11)

Define the stopping time

τh = inf{t ≥ t0 : |x(t)| ≥ h}.

By Itô’s formula, we can show that for any t ≥ t0,

EV (x(τh ∧ t), τh ∧ t) ≤ V (x0, t0). (2.12)

But, by (2.11), we see that

EV (x(τh ∧ t), τh ∧ t) ≥ 4V (x0, t0)
ε

P{τh ≤ t}

It then follows from (2.12) that

P{τh ≤ t} ≤ ε

4
.

Letting t →∞ gives P{τh < ∞} ≤ ε/4. That is

P{|x(t)| ≤ h for all t ≥ t0} ≥ 1− ε

4
. (2.13)

From here, we can show in the same way as the proof of Theorem 2.3 that

P{ lim
t→∞

x(t) = 0} ≥ 1− ε.

Since ε is arbitrary, the required (2.10) must hold and the proof is complete.
The functions V (x, t) used in Theorems 2.2–2.4 are called stochastic Lya-

punov functions, and the use of these theorems depends on the construction of
the functions. As in the deterministic case, there are a number of techniques
that can be used to find suitable functions. For example, the quadratic function

V (x, t) = xT Qx,

where Q is a symmetric positive-definite matrix, will do if

LV (x, t) = 2xT Qf(x, t) + trace[gT (x, t)Qg(x, t)] ≤ 0

or is negative-definite in some neighbourhood of x = 0 for t ≥ t0. Besides,
one can seek a positive-definite solution of the equation LV (x, t) = 0 or of the
inequality LV (x, t) ≤ 0. We now discuss a few examples to illustrate the theory.
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Example 2.5 Consider a one-dimensional stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t) on t ≥ t0 (2.14)

with initial value x(t0) = x0 ∈ R. Assume that f : R × R+ → R and g :
R×R+ → Rm have the expansions

f(x, t) = a(t)x + o(|x|), g(x, t) = (b1(t)x, · · · , bm(t)x)T + o(|x|) (2.15)

in a neighbourhood of x = 0 uniformly with respect to t ≥ t0, where a(t), bi(t)
are all bounded Borel-measurable real-valued functions. We impose a condition
that there is a pair of positive constants θ and K such that

−K ≤
∫ t

t0

(
a(s)− 1

2

m∑
i=1

b2
i (s) + θ

)
ds ≤ K for all t ≥ t0. (2.16)

Let
0 < ε <

θ

supt≥t0

∑m
i=1 b2

i (t)

and define the stochastic Lyapunov function

V (x, t) = |x|ε exp
[
−ε

∫ t

t0

(
a(s)− 1

2

m∑
i=1

b2
i (s) + θ

)
ds

]
.

By condition (2.16),
|x|εe−εK ≤ V (x, t) ≤ |x|εeεK .

Hence V (x, t) is positive-definite and decrescent. On the other hand, by (2.15),

LV (x, t) = ε|x|ε exp
[
−ε

∫ t

t0

(
a(s)− 1

2

m∑
i=1

b2
i (s) + θ

)
ds

]

×
(ε

2

m∑
i=1

b2
i (t)− θ

)
+ o(|x|ε)

≤ −1
2
εθe−εK |x|ε + o(|x|ε).

We hence see that LV (x, t) is negative-definite in a sufficiently small neighbour-
hood of x = 0 for t ≥ t0. By Theorem 2.4 we therefore conclude that under (2.15)
and (2.16), the trivial solution of equation (2.14) is stochastically asymptotically
stable.

Example 2.6 Assume that the coefficients f and g of equation (1.2) have the
expansions

f(x, t) = F (t)x + o(|x|), g(x, t) = (G1(t)x, · · · , Gm(t)x) + o(|x|) (2.17)
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in a neighbourhood of x = 0 uniformly with respect to t ≥ t0, where F (t), Gi(t)
are all bounded Borel-measurable d × d-matrix-valued functions. Assume that
there is a symmetric positive-definite matrix Q such that the symmetric matrix

QF (t) + FT (t)Q +
m∑

i=1

GT
i (t)QGi(t)

is negative-definite uniformly in t ≥ t0, that is

λmax

(
QF (t) + FT (t)Q +

m∑
i=1

GT
i (t)QGi(t)

)
≤ −λ < 0 (2.18)

for all t ≥ t0, where (and throughout this book) λmax(A) denotes the largest
eigenvalue of matrix A. Now, define the stochastic Lyapunov function V (x, t) =
xT Qx. It is obviously positive-definite and decrescent. Moreover,

LV (x, t) = xT
(
QF (t) + FT (t)Q +

m∑
i=1

GT
i (t)QGi(t)

)
x + o(|x|2)

≤ −λ|x|2 + o(|x|2).

Hence LV (x, t) is negative-definite in a sufficiently small neighbourhood of x = 0
for t ≥ t0. By Theorem 2.4 we therefore conclude that under (2.17) and (2.18),
the trivial solution of equation (1.2) is stochastically asymptotically stable.

In the case of linear stochastic differential equations, one may make use
of the explicit solutions to determine whether the equations are stochastically
stable or not. The following example demonstrates the idea.

Example 2.7 Consider a one-dimensional linear stochastic differential equation

dx(t) = a(t)x(t)dt +
m∑

i=1

bi(t)x(t)dBi(t) on t ≥ t0 (2.19)

with initial value x(t0) = x0, where a(t), bi(t) are continuous real-valued func-
tions on [t0,∞). By Lemma 3.2.3, the unique solution of equation (2.19) is

x(t) = x0 exp
[∫ t

t0

(
a(s)− 1

2

m∑
i=1

b2
i (s)

)
ds +

m∑
i=1

∫ t

t0

bi(s)dBi(s)
]
. (2.20)

Set σ(t) =
∑m

i=1

∫ t

t0
b2
i (s)ds for t0 ≤ t ≤ ∞. We divide the discussion of stability

into two cases.
Case (i) : σ(∞) < ∞. In this case,

∑m
i=1

∫ t

t0
bi(s)dBi(s) approaches the nor-

mal distribution N(0, σ(∞)). It therefore follows from (2.20) that the trivial
solution of equation (2.20) is stochastically stable if and only if

lim sup
t→∞

∫ t

t0

a(s)ds < ∞,



118 Stability of Stochastic Differential Equations [Ch.4

while the trivial solution is stochastically asymptotically stable in the large if
and only if

lim
t→∞

∫ t

t0

a(s)ds = −∞.

Case (ii) : σ(∞) = ∞. Let τ(s), s ≥ 0, be the inverse function of σ(t), that
is

τ(s) = inf{t ≥ t0 : σ(t) = s}.

Clearly, σ(τ(s)) = s if s ≥ 0 and τ(σ(t)) = t if t ≥ t0 . Define

B̄(s) =
m∑

i=1

∫ τ(s)

t0

bi(t)dBi(t) on s ≥ 0.

Then B̄(s) is a continuous martingale with B̄(0) = 0 and the quadratic variation

〈B̄, B̄〉s =
m∑

i=1

∫ τ(s)

t0

b2
i (t)dt = σ(τ(s)) = s.

By Lévy’s theorem (i.e. Theorem 1.4.4), B̄(s) is a Brownian motion. So, by the
law of the iterated logarithm,

lim sup
s→∞

B̄(s)√
2s log log s

= 1 a.s.

Consequently

lim sup
t→∞

∑m
i=1

∫ t

t0
bi(s)dBi(s)√

2σ(t) log log σ(t)
= lim sup

t→∞

B̄(σ(t))√
2σ(t) log log σ(t)

= 1 a.s.

Applying this to (2.20) we can conclude that the trivial solution of equation
(2.19) is stochastically asymptotically stable in the large if

lim sup
t→∞

∫ t

t0
a(s)ds− 1

2σ(t)√
2σ(t) log log σ(t)

< −1 a.s. (2.21)

As a special case, let
a(t) = a, bi(t) = bi (2.22)

be all constants. In this case, (2.21) holds if and only if

a <
1
2

m∑
i=1

b2
i . (2.23)

Hence, under (2.22) and (2.23), the solution of equation (2.19) will tend to the
equilibrium position x = 0. On the other hand, we can compute more precisely
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how fast the solution tends to zero. In fact, under (2.22), the unique solution of
equation (2.19) is

x(t; t0, x0) = x0 exp
[(

a− 1
2

m∑
i=1

b2
i

)
(t− t0) +

m∑
i=1

bi(Bi(t)−Bi(t0))
]
.

So

log |x(t; t0, x0)| = log |x0|+
(
a− 1

2

m∑
i=1

b2
i

)
(t− t0) +

m∑
i=1

bi(Bi(t)−Bi(t0)).

Noting from the law of the iterated logarithm that

lim
t→∞

Bi(t)−Bi(t0)
t

= 0 a.s.

we then derive that, if (2.23) holds,

lim
t→∞

1
t

log |x(t; t0, x0)| = a− 1
2

m∑
i=1

b2
i < 0 a.s. (2.24)

that is the sample Lyapunov exponent is negative. Hence, for any 0 < ε <
1
2

∑m
i=1 b2

i − a, one can find a positive random variable ξ = ξ(t0, x0, ε) such that

|x(t; t0, x0)| ≤ ξ exp
[
−

(1
2

m∑
i=1

b2
i − a− ε

)
(t− t0)

]
for all t ≥ t0.

In other words, almost all sample paths of the solution will tend to the equi-
librium position x = 0 exponentially fast. Such a property will be called the
almost sure exponential stability. Let us now turn to study this type of stability
in detail.

4.3 ALMOST SURE EXPONENTIAL STABILITY

We first give the formal definition of the almost sure exponential stability.

Definition 3.1 The trivial solution of equation (1.2) is said to be almost surely
exponentially stable if

lim sup
t→∞

1
t

log |x(t; t0, x0)| < 0 a.s. (3.1)

for all x0 ∈ Rd.

As defined in Section 2.5, the left-hand side of (3.1) is called the sample
Lyapunov exponents of the solution. We therefore see that the trivial solution is
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almost surely exponentially stable if and only if the sample Lyapunov exponents
are negative. As explained in the end of previous section, the almost sure ex-
ponential stability means that almost all sample paths of the solution will tend
to the equilibrium position x = 0 exponentially fast. Moreover, let us explain
once again why we only need to discuss the case of constant initial values. For
a general initial value x0 (i.e. x0 is Ft0-measurable and belongs to L2(Ω; Rd)),
it follows from (3.1) that

P
{
lim sup

t→∞

1
t

log |x(t; t0, x0)| < 0
}

=
∫

Rd

P
{
lim sup

t→∞

1
t

log |x(t; t0, y)| < 0
}
P{x0 ∈ dy}

=
∫

Rd

P{x0 ∈ dy} = 1,

that is

lim sup
t→∞

1
t

log |x(t; t0, x0)| < 0 a.s.

To establish the theorems on the almost sure exponential stability, we need
prepare a useful lemma. Recall that we assume, throughout this chapter, that
the assumptions of the existence-and-uniqueness Theorem 2.3.6 are fulfilled and,
moreover, f(0, t) ≡ 0, g(0, t) ≡ 0. Under these standing hypotheses, we have
the following useful lemma.

Lemma 3.2 For all x0 6= 0 in Rd

P{x(t; t0, x0) 6= 0 on t ≥ t0} = 1. (3.2)

That is, almost all the sample path of any solution starting from a non-zero state
will never reach the origin.

Proof. If (3.2) were false, there would exist some x0 6= 0 such that P{τ < ∞} >
0, where τ is the first time of zero of the corresponding solution, i.e.

τ = inf{t ≥ t0 : x(t) = 0}

in which we write x(t; t0, x0) = x(t) simply. So we can find a pair of constants
T > t0 and θ > 1 sufficiently large for P (B) > 0, where

B = {τ ≤ T and |x(t)| ≤ θ − 1 for all t0 ≤ t ≤ τ}.

But, by the standing hypotheses, there exists a positive constant Kθ such that

|f(x, t)| ∨ |g(x, t)| ≤ Kθ|x| for all |x| ≤ θ, t0 ≤ t ≤ T.
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Let V (x, t) = |x|−1. Then, for 0 < |x| ≤ θ and t0 ≤ t ≤ T ,

LV (x, t) = −|x|−3xT f(x, t) +
1
2

(
−|x|−3|g(x, t)|2 + 3|x|−5|xT g(x, t)|2

)
≤ |x|−2|f(x, t)|+ |x|−3|g(x, t)|2

≤ Kθ|x|−1 + K2
θ |x|−1 = Kθ(1 + Kθ)V (x, t).

Now, for any ε ∈ (0, |x0|), define the stopping time

τε = inf{t ≥ t0 : |x(t)| /∈ (ε, θ)}.

By Itô’s formula,

E
[
e−Kθ(1+Kθ)(τε∧T−t0)V (x(τε ∧ T ), τε ∧ T )

]
= V (x0, t0)

+ E

∫ τε∧T

t0

e−Kθ(1+Kθ)(s−t0)
[
−(Kθ(1 + Kθ))V (x(s), s) + LV (x(s), s)

]
ds

≤ |x0|−1.

Note that for ω ∈ B, τε ≤ T and |x(τε)| = ε. The above inequality therefore
implies that

E
[
e−Kθ(1+Kθ)(T−t0)ε−1IB

]
≤ |x0|−1.

Hence
P (B) ≤ ε|x0|−1eKθ(1+Kθ)(T−t0).

Letting ε → 0 yields that P (B) = 0, but this contradicts the definition of B.
The proof is complete.

Theorem 3.3 Assume that there exists a function V ∈ C2,1(Rd× [t0,∞);R+),
and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0, such that for all x 6= 0 and t ≥ t0,

(i) c1|x|p ≤ V (x, t),
(ii) LV (x, t) ≤ c2V (x, t),
(iii) |Vx(x, t)g(x, t)|2 ≥ c3V

2(x, t).
Then

lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ −c3 − 2c2

2p
a.s. (3.3)

for all x0 ∈ Rd. In particular, if c3 > 2c2, the trivial solution of equation (1.2)
is almost surely exponentially stable.

Proof. Clearly, (3.3) holds for x0 = 0 since x(t; t0, 0) ≡ 0. We therefore only
need to show (3.3) for x0 6= 0. Fix any x0 6= 0 and write x(t; t0, x0) = x(t).
By Lemma 3.2, x(t) 6= 0 for all t ≥ t0 almost surely. Thus, one can apply Itô’s
formula and condition (ii) to show that, for t ≥ t0,

log V (x(t), t) ≤ log V (x0, t0) + c2(t− t0) + M(t)

− 1
2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds, (3.4)
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where

M(t) =
∫ t

t0

Vx(x(s), s)g(x(s), s)
V (x(s), s)

dB(s)

is a continuous martingale with initial value M(t0) = 0. Assign ε ∈ (0, 1)
arbitrarily and let n = 1, 2, · · ·. By the exponential martingale inequality,

P

{
sup

t0≤t≤t0+n

[
M(t)− ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds

]
>

2
ε

log n

}
≤ 1

n2
.

Applying the Borel–Cantelli lemma we see that for almost all ω ∈ Ω, there is an
integer n0 = n0(ω) such that if n ≥ n0,

M(t) ≤ 2
ε

log n +
ε

2

∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds

holds for all t0 ≤ t ≤ t0+n. Substituting this into (3.4) and then using condition
(iii) we obtain that

log V (x(t), t) ≤ log V (x0, t0)−
1
2
[(1− ε)c3 − 2c2](t− t0) +

2
ε

log n

for all t0 ≤ t ≤ t0 +n, n ≥ n0 almost surely. Consequently, for almost all ω ∈ Ω,
if t0 + n− 1 ≤ t ≤ t0 + n and n ≥ n0,

1
t

log V (x(t), t) ≤ − t− t0
2t

[(1− ε)c3 − 2c2] +
log V (x0, t0) + 2

ε log n

t0 + n− 1
.

This implies

lim sup
t→∞

1
t

log V (x(t), t) ≤ −1
2
[(1− ε)c3 − 2c2] a.s.

Finally, using condition (i) we obtain

lim sup
t→∞

1
t

log |x(t)| ≤ − (1− ε)c3 − 2c2

2p
a.s.

and the required assertion (3.3) follows since ε > 0 is arbitrary. The proof is
complete.

Corollary 3.4 Assume that there exists a function V ∈ C2,1(Rd× [t0,∞);R+),
and positive constants p, α, λ, such that for all x 6= 0, t ≥ t0,

α|x|p ≤ V (x, t) and LV (x, t) ≤ −λV (x, t).

Then
lim sup

t→∞

1
t

log |x(t; t0, x0)| ≤ −λ

p
a.s.
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for all x0 ∈ Rd. In other words, the trivial solution of equation (1.2) is almost
surely exponentially stable.

This corollary follows from Theorem 3.3 immediately by letting c1 = α,
c2 = −λ and c3 = 0. These results have given the upper bound for the sample
Lyapunov exponents. Let us now turn to the study of the lower bound.

Theorem 3.5 Assume that there exists a function V ∈ C2,1(Rd× [t0,∞);R+),
and constants p > 0, c1 > 0, c2 ∈ R, c3 > 0, such that for all x 6= 0 and t ≥ t0,

(i) c1|x|p ≥ V (x, t) > 0,
(ii) LV (x, t) ≥ c2V (x, t),
(iii) |Vx(x, t)g(x, t)|2 ≤ c3V

2(x, t).
Then

lim inf
t→∞

1
t

log |x(t; t0, x0)| ≥
2c2 − c3

2p
a.s. (3.5)

for all x0 6= 0 in Rd. In particular, if 2c2 > c3, then almost all the sample
paths of |x(t; t0, x0)| will tend to infinity, and we say in this case that the trivial
solution of equation (1.2) is almost surely exponentially unstable.

Proof. Fix any x0 6= 0 and write x(t; t0, x0) = x(t). By Itô’s formula, conditions
(ii) and (iii), we can easily show that for t ≥ t0,

log V (x(t), t) ≥ log V (x0, t0) +
1
2
(2c2 − c3)(t− t0) + M(t), (3.6)

where

M(t) =
∫ t

t0

Vx(x(s), s)g(x(s), s)
V (x(s), s)

dB(s)

is a continuous martingale with the quadratic variation

〈M(t),M(t)〉 =
∫ t

t0

|Vx(x(s), s)g(x(s), s)|2

V 2(x(s), s)
ds ≤ c3(t− t0).

By the strong law of large numbers (i.e. Theorem 1.3.4), limt→∞M(t)/t = 0
a.s. It therefore follows from (3.6) that

lim inf
t→∞

1
t

log V (x(t), t) ≥ 1
2
(2c2 − c3) a.s.

which implies the required assertion (3.5) by using condition (i).
We have already known that for the scalar linear stochastic differential

equation

dx(t) = ax(t) +
m∑

i=1

bix(t)dBi(t) on t ≥ t0, (3.7)
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the sample Lyapunov exponent is

lim
t→∞

1
t

log |x(t; t0, x0)| = a− 1
2

m∑
i=1

b2
i a.s. (3.8)

We now apply Theorems 3.3 and 3.5 to obtain the same conclusion. Let V (x, t) =
x2. Then

LV (x, t) =
(
2a +

m∑
i=1

b2
i

)
|x|2

and, writing g(x, t) = (b1x, · · · , bmx),

|Vx(x, t)g(x, t)|2 = 4
m∑

i=1

b2
i |x|4.

Hence, by Theorem 3.3 with p = 2, c1 = 1, c2 = 2a +
∑m

i=1 b2
i and c3 =

4
∑m

i=1 b2
i , we have

lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ a− 1
2

m∑
i=1

b2
i a.s. (3.9)

But, by Theorem 3.5,

lim inf
t→∞

1
t

log |x(t; t0, x0)| ≥ a− 1
2

m∑
i=1

b2
i a.s. (3.10)

Combining (3.9) and (3.10) gives (3.8). This show that results obtained in
Theorems 3.3 and 3.5 are very sharp. Let us now discuss a few more examples.

Example 3.6 Consider the two-dimensional stochastic differential equation

dx(t) = f(x(t))dt + Gx(t)dB(t) on t ≥ t0 (3.11)

with initial value x(t0) = x0 ∈ R2, where B(t) is a one-dimensional Brownian
motion,

f(x) =
(

x2 cos x1

2x1 sinx2

)
, G =

(
3 −0.3

−0.3 3

)
.

Let V (x, t) = |x|2. It is easy to verify that

4.29|x|2 ≤ LV (x, t) = 2x1x2 cos x1 + 4x1x2 sinx2 + |Gx|2 ≤ 13.89|x|2

and
29.16|x|2 ≤ |Vx(x, t)Gx|2 = |2xT Gx|2 ≤ 43.56|x|4.
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Applying Theorems 3.3 and 3.5 we obtain the following lower and upper bound
for the sample Lyapunov exponents of the solutions of equation (3.11)

−8.745 ≤ lim inf
t→∞

1
t

log |x(t; t0, x0)| ≤ lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ −0.345

almost surely. Hence the trivial solution of equation (3.11) is almost surely
exponentially stable.

Example 3.7 It is known that a linear oscillator ÿ(t) + aẏ(t) + by(t) = 0 is
exponentially stable if a > 0 and b > 0. Assume that the oscillator is now driven
by an external disturbance of white noise described by (cẏ(t) + hy(t))Ḃ(t). In
other words, we arrive at the scalar linear stochastic oscillator

ÿ(t) + aẏ(t) + by(t) = (cẏ(t) + hy(t))Ḃ(t) (3.12)

on t ≥ 0 with initial value (y(0), ẏ(0)) = (y1, y2) ∈ R2. Here Ḃ(t) is a scalar
white noise (i.e. B(t) is a Brownian motion), and c, h are constants which
represent the intensity of the stochastic disturbance. Introduce a vector x =
(x1, x2)T = (y, ẏ)T . Then equation (3.12) can be written as the two-dimensional
Itô equation{

dx1(t) = x2(t)dt,

dx2(t) = (−bx1(t)− ax2(t))dt + (cx2(t) + hx1(t))dB(t).
(3.13)

For the Lyapunov function, we try a quadratic function

V (x, t) = αx2
1 + βx1x2 + x2

2.

Compute

LV (x, t) = −(βb− h2)x2
1 − (2a− β − c2)x2

2 + (2α− βa− 2b + 2ch)x1x2.

In order to convert LV (x, t) to be negative-definite (i.e. LV (x, t) ≤ −ε|x|2 for
some ε > 0), we set

2α− βa− 2b + 2ch = 0, that is α =
1
2
(βa + 2b− 2ch).

Then V and LV become

V (x, t) =
1
2
(βa + 2b− 2ch)x2

1 + βx1x2 + x2
2

and
LV (x, t) = −(βb− h2)x2

1 − (2a− β − c2)x2
2.
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For LV (x, t) to be negative-definite, we must have βb−h2 > 0 and 2a−β−c2 > 0,
that is

h2

b
< β < 2a− c2. (3.14)

For V to be positive-definite (i.e. V (x, t) ≥ ε|x|2 for some ε > 0), we must have

2(βa + 2b− 2ch) > β2,

this is equivalent to

a−
√

a2 + 4(b− ch) < β < a +
√

a2 + 4(b− ch). (3.15)

Combining (3.14) and (3.15) we see that if

max
{h2

b
, a−

√
a2 + 4(b− ch)

}
< β < min

{
2a− c2, a +

√
a2 + 4(b− ch)

}
,

then V is positive-definite and LV negative-definite. We therefore conclude, by
Corollary 3.4, that if

max
{h2

b
, a−

√
a2 + 4(b− ch)

}
< min

{
2a− c2, a +

√
a2 + 4(b− ch)

}
(3.16)

then
lim sup

t→∞

1
t

log(|y(t)|+ |ẏ(t)|) < 0 a.s.

that is the trivial solution (y(t), ẏ(t)) = 0 of the stochastic oscillator (3.12)
is almost surely exponentially stable. A more restrictive but possibly more
convenient condition than (3.16) is

ch ≤ b, h2 + bc2 < 2ab. (3.17)

This condition gives a quite clear estimate for the intensity of the external
stochastic disturbance in the sense that the disturbance can be tolerated by
the stable deterministic oscillator ÿ(t) + aẏ(t) + by(t) = 0 without loss of the
stability property.

Example 3.8 Consider the linear homogeneous Itô equation

dx(t) = Fx(t)dt +
m∑

i=1

Gkx(t)dBi(t) on t ≥ t0 (3.18)

with initial value x(t0) = x0 ∈ Rd. Assume that all the d × d matrices
F,G1, · · · , Gm commute, that is,

FGi = GiF, GiGj = GjGi for all 1 ≤ i, j ≤ m. (3.19)
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In Section 3.4 we have shown that equation (3.18) has the explicit solution

x(t; t0, x0) = exp
[(

F − 1
2

m∑
i=1

G2
i

)
(t− t0) +

m∑
i=1

Gi(Bi(t)−Bi(t0))
]
x0. (3.20)

We now assume that all the eigenvalues of F − 1
2

∑m
i=1 G2

i have negative real
parts. This is equivalent to that there is a pair of positive constants C and λ
such that ∣∣∣∣∣∣∣∣exp

[(
F − 1

2

m∑
i=1

G2
i

)
(t− t0)

]∣∣∣∣∣∣∣∣ ≤ Ce−λ(t−t0). (3.21)

It then follows from (3.20) that

|x(t; t0, x0)| ≤ C|x0| exp
[
−λ(t− t0) +

m∑
i=1

||Gi|| |Bi(t)−Bi(t0)|
]
.

Using the property limt→∞ |Bi(t)− Bi(t0)|/t = 0 a.s. of the Brownian motion,
we obtain immediately that

lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ −λ a.s. (3.22)

In other words, we have shown that under conditions (3.19) and (3.21) the trivial
solution of equation (3.18) is almost surely exponentially stable.

4.4 MOMENT EXPONENTIAL STABILITY

In this section we shall discuss the pth moment exponential stability for
equation (1.2) and we shall always let p > 0. Let us first give the definition of
the pth moment exponential stability.

Definition 4.1 The trivial solution of equation (1.2) is said to be pth moment
exponentially stable if there is a pair of positive constants λ and C such that

E|x(t; t0, x0)|p ≤ C|x0|pe−λ(t−t0) on t ≥ t0 (4.1)

for all x0 ∈ Rd. When p = 2, it is usually said to be exponentially stable in
mean square.

Clearly, the pth moment exponential stability means that the pth moment
of the solution will tend to 0 exponentially fast. It also follows from (4.1) that

lim sup
t→∞

1
t

log
(
E|x(t; t0, x0)|p

)
< 0. (4.2)

As defined in Section 2.5, the left-hand side of (4.2) is called the pth moment
Lyapunov exponent of the solution. So, in this case, the pth moment Lyapunov
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exponent is negative. Moreover, if one wishes to consider the initial value of an
Ft0-measurable random variable x0 ∈ Lp(Ω; Rd), then, by (4.1),

E|x(t; t0, x0)|p =
∫

Rd

E|x(t; t0, y)|pP{x0 ∈ dy}

≤
∫

Rd

C|y|pe−λ(t−t0)P{x0 ∈ dy} = CE|x0|pe−λ(t−t0).

Besides, noting (E|x(t)|p̂)1/p̂ ≤ (E|x(t)|p)1/p for 0 < p̂ < p we see that the pth
moment exponential stability implies the p̂th moment exponential stability.

Generally speaking, the pth moment exponential stability and the almost
sure exponential stability do not imply each other and additional conditions are
required in order to deduce one from the other. The following theorem gives the
conditions under which the pth moment exponential stability implies the almost
sure exponential stability.

Theorem 4.2 Assume that there is a positive constant K such that

xT f(x, t) ∨ |g(x, t)|2 ≤ K|x|2 for all (x, t) ∈ Rd × [t0,∞). (4.3)

Then the pth moment exponential stability of the trivial solution of equation (1.2)
implies the almost sure exponential stability.

Proof. Fix any x0 6= 0 in Rd and write x(t; t0, x0) = x(t) simply. By the
definition of the pth moment exponential stability, there is a pair of positive
constants λ and C such that

E|x(t)|p ≤ C|x0|pe−λ(t−t0) on t ≥ t0. (4.4)

Let n = 1, 2, · · ·. By Itô’s formula and condition (4.3), one can show that for
t0 + n− 1 ≤ t ≤ t0 + n,

|x(t)|p = |x(t0 + n− 1)|p +
∫ t

t0+n−1

p|x(s)|p−2xT (s)f(x(s), s)ds

+
1
2

∫ t

t0+n−1

[
p|x(s)|p−2|g(x(s), s)|2 + p(p− 2)|x|p−4|xT (s)g(x(s), s)|2

]
ds

+
∫ t

t0+n−1

p|x(s)|p−2xT (s)g(x(s), s)dB(s)

≤ |x(t0 + n− 1)|p + c1

∫ t

t0+n−1

|x(s)|pds

+
∫ t

t0+n−1

p|x(s)|p−2xT (s)g(x(s), s)dB(s),

where c1 = pK + p(1 + |p− 2|)K/2. Hence

E
(

sup
t0+n−1≤t≤t0+n

|x(t)|p
)
≤ E|x(t0 + n− 1)|p + c1

∫ t0+n

t0+n−1

E|x(s)|pds

+ E

(
sup

t0+n−1≤t≤t0+n

∫ t

t0+n−1

p|x(s)|p−2xT (s)g(x(s), s)dB(s)
)

. (4.5)
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On the other hand, by the Burkholder–Davis–Gundy inequality (i.e. Theorem
1.7.3), we have that

E

(
sup

t0+n−1≤t≤t0+n

∫ t

t0+n−1

p|x(s)|p−2xT (s)g(x(s), s)dB(s)
)

≤ 4
√

2E

(∫ t0+n

t0+n−1

p2|x(s)|2(p−2)|xT (s)g(x(s), s)|2ds

) 1
2

≤ 4
√

2E

(
sup

t0+n−1≤s≤t0+n
|x(s)|p

∫ t0+n

t0+n−1

p2K|x(s)|pds

) 1
2

≤ 1
2
E

(
sup

t0+n−1≤s≤t0+n
|x(s)|p

)
+ 16p2K

∫ t0+n

t0+n−1

E|x(s)|pds,

where we have also used the elementary inequality
√

ab ≤ (a+b)/2. Substituting
this into (4.5) yields that

E
(

sup
t0+n−1≤t≤t0+n

|x(t)|p
)
≤ 2E|x(t0 + n− 1)|p + c2

∫ t0+n

t0+n−1

E|x(s)|pds,

where c2 = 2c1 + 32p2K. Applying (4.4) we obtain that

E
(

sup
t0+n−1≤t≤t0+n

|x(t)|p
)
≤ c3e

−λ(n−1), (4.6)

where c3 = C|x0|p(2+ c2). Now, let ε ∈ (0, λ) be arbitrary. It follows from (4.6)
that

P
{

sup
t0+n−1≤t≤t0+n

|x(t)|p > e−(λ−ε)(n−1)
}

≤ e(λ−ε)(n−1)E
(

sup
t0+n−1≤t≤t0+n

|x(t)|p
)
≤ c3e

−ε(n−1).

In view of the Borel–Cantelli lemma we see that for almost all ω ∈ Ω,

sup
t0+n−1≤t≤t0+n

|x(t)|p ≤ e−(λ−ε)(n−1) (4.7)

holds for all but finitely many n. Hence, there exists an n0 = n0(ω), for all ω ∈ Ω
excluding a P -null set, for which (4.7) holds whenever n ≥ n0. Consequently,
for almost all ω ∈ Ω,

1
t

log |x(t)| ≤ 1
pt

log(|x(t)|p) ≤ − (λ− ε)(n− 1)
p(t0 + n− 1)

if t0 + n− 1 ≤ t ≤ t0 + n, n ≥ n0. Hence

lim sup
t→∞

1
t

log |x(t)| ≤ − (λ− ε)
p

a.s.
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Since ε > 0 is arbitrary, we must have

lim sup
t→∞

1
t

log |x(t)| ≤ −λ

p
a.s.

By definition, the trivial solution of equation (1.2) is almost surely exponentially
stable. The proof is complete.

Although condition (4.3) is not guaranteed by the assumptions of the
existence-and-uniqueness Theorem 2.3.6 which are assumed throughout this
chapter, it is satisfied in many important cases. For example, if the coefficients
f(x, t) and g(x, t) are uniformly Lipschitz continuous, then (4.3) is fulfilled bear-
ing in mind that we always assume f(0, t) ≡ 0 and g(0, t) ≡ 0 in this chapter.
Moreover, for the d-dimensional linear stochastic differential equation

dx(t) = F (t)x(t)dt +
m∑

i=1

Gi(t)x(t)dBi(t), (4.8)

condition (4.3) is fulfilled if F, Gi are all bounded d×d-matrix-valued functions.
Hence, we obtain a useful corollary.

Corollary 4.3 Let F, Gi be all bounded d × d-matrix-valued functions. Then
the pth moment exponential stability of the trivial solution of the linear equation
(4.8) implies the almost sure exponential stability.

We shall now establish a sufficient criterion for the pth moment exponential
stability via a Lyapunov function.

Theorem 4.4 Assume that there is a function V (x, t) ∈ C2,1(Rd×[t0,∞);R+),
and positive constants c1–c3, such that

c1|x|p ≤ V (x, t) ≤ c2|x|p and LV (x, t) ≤ −c3V (x, t) (4.9)

for all (x, t) ∈ Rd × [t0,∞). Then

E|x(t; t0, x0)|p ≤
c2

c1
|x0|pe−c3(t−t0) on t ≥ t0 (4.10)

for all x0 ∈ Rd. In other words, the trivial solution of equation (1.2) is pth
moment exponentially stable and the pth moment Lyapunov exponent should not
be greater than −c3.

Proof. Fix any x0 ∈ Rd and write x(t; t0, x0) = x(t). For each n ≥ |x0|, define
the stopping time

τn = inf{t ≥ t0 : |x(t)| ≥ n}.
Obviously, τn → ∞ as n → ∞ almost surely. By Itô’s formula, we can derive
that for t ≥ t0,

E
[
ec3(t∧τn−t0)V (x(t ∧ τn), t ∧ τn)

]
= V (x0, t0)

+E

∫ t∧τn

t0

ec3(s−t0)
[
c3V (x(s), s) + LV (x(s), s)

]
ds.
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Using condition (4.9) we then obtain that

c1e
c3(t∧τn−t0)E|x(t ∧ τn)|p ≤ E

[
ec3(t∧τn−t0)V (x(t ∧ τn), t ∧ τn)

]
≤ V (x0, t0) ≤ c2|x0|p.

Letting n →∞ yields that

c1e
c3(t−t0)E|x(t)|p ≤ c2|x0|p

which implies the desired assertion (4.10).
Similarly we can prove the following theorem that gives a sufficient criterion

for the qth moment exponential instability.

Theorem 4.5 Let q > 0. Assume that there is a function V (x, t) ∈ C2,1(Rd ×
[t0,∞);R+), and positive constants c1–c3, such that

c1|x|q ≤ V (x, t) ≤ c2|x|q and LV (x, t) ≥ c3V (x, t)

for all (x, t) ∈ Rd × [t0,∞). Then

E|x(t; t0, x0)|q ≥
c1

c2
|x0|qec3(t−t0) on t ≥ t0

for all x0 ∈ Rd, and we say in this case that the trivial solution of equation (1.2)
is qth moment exponentially unstable.

Since (E|x(t)|q̂)1/q̂ ≥ (E|x(t)|q)1/q for q̂ > q, the qth moment exponential
instability implies the q̂th moment exponential instability. We now use Theorem
4.4 to establish a useful corollary.

Corollary 4.6 Assume that there exists a symmetric positive-definite d × d
matrix Q, and constants α1–α3, such that for all (x, t) ∈ Rd × [t0,∞),

xT Qf(x, t) +
1
2
trace[gT (x, t)Qg(x, t)] ≤ α1x

T Qx (4.11)

and
α2x

T Qx ≤ |xT Qg(x, t)| ≤ α3x
T Qx. (4.12)

(i) If α1 < 0, then the trivial solution of equation (1.2) is pth moment expo-
nentially stable provided p < 2 + 2|α1|/α2

3.
(ii) If 0 ≤ α1 < α2

2, then the trivial solution of equation (1.2) is pth moment
exponentially stable provided p < 2− 2α1/α2

2.

Proof. Let V (x, t) = (xT Qx)
p
2 . Then

λ
p
2
min(Q)|x|p ≤ V (x, t) ≤ λ

p
2
max(Q)|x|p,
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where λmin(Q) and λmax(Q) denote the smallest and largest eigenvalue of Q,
respectively. It is also easy to verify that

LV (x, t) = p(xT Qx)
p
2−1

(
xT Qf(x, t) +

1
2
trace[gT (x, t)Qg(x, t)]

)
+ p

(p

2
− 1

)
(xT Qx)

p
2−2|xT Qg(x, t)|2. (4.13)

(i) Assume that α1 < 0 and p < 2 + 2|α1|/α2
3. Without loss of generality,

we can let p ≥ 2. Using (4.11) and (4.12), we then derive from (4.13) that

LV (x, t) ≤ −p
[
|α1| −

(p

2
− 1

)
α2

3

]
V (x, t).

An application of Theorem 4.4 implies that the trivial solution of equation (1.2)
is pth moment exponentially stable.

(ii) Assume that 0 ≤ α1 < α2
2 and p < 2− 2α1/α2

2. In this case we have

LV (x, t) ≤ −p
[(p

2
− 1

)
α2

2 − α1

]
V (x, t).

So the conclusion follows from Theorem 4.4 again. The proof is complete.
Similarly, we can use Theorem 4.5 to show the following result on the

moment exponential instability.

Corollary 4.7 Assume that there exists a symmetric positive-definite d × d
matrix Q, and positive constants β1, β2, such that for all (x, t) ∈ Rd × [t0,∞),

xT Qf(x, t) +
1
2
trace[gT (x, t)Qg(x, t)] ≥ β1x

T Qx (4.14)

and
|xT Qg(x, t)| ≤ β2x

T Qx. (4.15)

Then the trivial solution of equation (1.2) is qth moment exponentially unstable
provided q > 0 ∨ (2− 2β1/β2

2).

Let us now discuss a few example for illustration.

Example 4.8 Consider the scalar linear Itô equation

dx(t) = ax(t) +
m∑

i=1

bix(t)dBi(t) on t ≥ t0. (4.16)

Here a, bi are all constants, and we assume that

0 < a <
1
2

m∑
i=1

b2
i . (4.17)
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With f(x, t) = ax and g(x, t) = (b1x, · · · , bmx), we have

xf(x, t) +
1
2
trace[gT (x, t)g(x, t)] =

(
a +

1
2

m∑
i=1

b2
i

)
x2

and

|xg(x, t)| =

√√√√ m∑
i=1

b2
i |x|

2.

Hence, by Corollary 4.6, the trivial solution of equation (4.16) is pth moment
exponentially stable if

p < 1− a
1
2

∑m
i=1 b2

i

,

while, by Corollary 4.7, it is qth moment exponentially unstable if

q > 1− a
1
2

∑m
i=1 b2

i

.

Example 4.9 This example is from the satellite dynamics. Sagirow (1970)
derived the equation

ÿ(t) + β(1 + αḂ(t))ẏ(t) + (1 + αḂ(t))y(t)− γ sin(2y(t)) = 0 (4.18)

in the study of the influence of a rapidly fluctuating density of the atmosphere
of the earth on the motion of a satellite in a circular orbit. Here Ḃ(t) is a scalar
white noise, α is a constant representing the intensity of the disturbance, and
β, γ are two positive constants. Introducing x = (x1, x2)T = (y, ẏ)T , we can
write equation (4.18) as the two-dimensional Itô equation{

dx1(t) = x2(t)dt,

dx2(t) = [−x1(t) + γ sin(2x1(t))− βx2(t)]dt− α[x1(t) + βx2(t)]dB(t).

For the Lyapunov function, we try an expression consisting of a quadratic form
and integral of the nonlinear component:

V (x, t) = ax2
1 + bx1x2 + x2

2 + c

∫ x1

0

sin(2y)dy

= ax2
1 + bx1x2 + x2

2 + c sin2 x1.

This yields

LV (x, t) = −(b− α2)x2
1 + bγx1 sin(2x1)− (2β − b− α2β2)x2

2

+ (2a− bβ − 2 + 2α2β)x1x2 + (c + 2γ)x2 sin(2x1).
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Setting 2a− bβ − 2 + 2α2β = 0 and c + 2γ = 0 we obtain

V (x, t) =
1
2
(bβ + 2− 2α2β)x2

1 + bx1x2 + x2
2 − 2γ sin2 x1

and
LV (x, t) = −(b− α2)x2

1 + bγx1 sin(2x1)− (2β − b− α2β2)x2
2.

Note that
V (x, t) ≥ 1

2
(bβ + 2− 2α2β − 4γ)x2

1 + bx1x2 + x2
2.

So V (x, t) ≥ ε|x|2 for some ε > 0 if

2(bβ + 2− 2α2β − 4γ) ≥ b2

or equivalently

β −
√

β2 + 4− 8γ − 4α2β < b < β +
√

β2 + 4− 8γ − 4α2β. (4.19)

Note also that

LV (x, t) ≤ −(b− α2 − 2bγ)x2
1 − (2β − b− α2β2)x2

2.

So LV (x, t) ≤ −ε̄|x|2 for some ε̄ > 0 provided both b − α2 − 2bγ > 0 and
2β − b− α2β2 > 0, that is

2γ < 1 and α2/(1− 2γ) < b < 2β − α2β2. (4.20)

We therefore conclude, by Theorem 4.4, that if γ < 1/2 and

max
{

α2/(1− 2γ), β −
√

β2 + 4− 8γ − 4α2β
}

< min
{

2β − α2β2, β +
√

β2 + 4− 8γ − 4α2β
}

(4.21)

then the trivial solution of equation (4.18) is exponentially stable in mean square.

Example 4.10 In the case of linear stochastic differential equations, the ex-
plicit solutions would of course be very useful in determining the pth moment
exponential stability. We now explain this idea through this example. Consider
the scalar linear Itô equation

dx(t) = a(t)x(t)dt +
m∑

i=1

bi(s)x(s)dBi(s) (4.22)

on t ≥ t0 with initial value x(t0) = x0 ∈ Rd, where a(t), bi(t) are all continuous
functions on [t0,∞). It has been shown that equation (4.22) has the explicit
solution

x(t) = x0 exp
[∫ t

t0

(
a(s)− 1

2

m∑
i=1

b2
i (s)

)
ds +

m∑
i=1

∫ t

t0

bi(s)dBi(s)
]
.
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Therefore

E|x(t)|p = |x0|pE exp
[
p

∫ t

t0

(
a(s)− 1

2

m∑
i=1

b2
i (s)

)
ds + p

m∑
i=1

∫ t

t0

bi(s)dBi(s)
]
.

But one can show (as an exercise for the reader) that

E exp
[
−p2

2

m∑
i=1

∫ t

t0

b2
i (s)ds + p

m∑
i=1

∫ t

t0

bi(s)dBi(s)
]

= 1.

Thus

E|x(t)|p = |x0|p exp
[
p

∫ t

t0

(
a(s)− 1− p

2

m∑
i=1

b2
i (s)

)
ds

]
. (4.23)

We therefore see that the trivial solution of equation (4.22) is pth moment ex-
ponentially stable if and only if

lim sup
t→∞

1
t

∫ t

t0

(
a(s)− 1− p

2

m∑
i=1

b2
i (s)

)
ds < 0; (4.24)

while it is qth moment exponentially unstable if and only if

lim inf
t→∞

1
t

∫ t

t0

(
a(s)− 1− q

2

m∑
i=1

b2
i (s)

)
ds > 0. (4.25)

If a(t) = a, bi(t) = bi are all constants, equation (4.22) reduces to equation
(4.16). In this case, (4.24) holds if and only if

a− 1− p

2

m∑
i=1

b2
i < 0, i.e. p < 1− a

1
2

∑m
i=1 b2

i

; (4.26)

while (4.25) holds if and only if

a− 1− q

2

m∑
i=1

b2
i > 0, i.e. q > 1− a

1
2

∑m
i=1 b2

i

. (4.27)

Clearly, these conclusions are the same as those of Example 4.8.

4.5 STOCHASTIC STABILIZATION AND DESTABILIZATION

It is not surprising that noise can destabilize a stable system. For example,
suppose that a given 2-dimensional exponentially stable system

ẏ(t) = −y(t) on t ≥ t0, y(t0) = x0 ∈ R2 (5.1)
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is perturbed by noise and the stochastically perturbed system is described by
the Itô equation

dx(t) = −x(t)dt + Gx(t)dB(t) on t ≥ t0, x(t0) = x0 ∈ R2. (5.2)

Here B(t) is a one-dimensional Brownian motion and

G =
(

0 −2
2 0

)
It has been shown that equation (5.2) has the explicit solution

x(t) = exp
[(
−I − 1

2
G2

)
(t− t0) + G(B(t)−B(t0))

]
x0

= exp
[
I(t− t0) + G(B(t)−B(t0))

]
,

where I is the 2× 2 identity matrix. Consequently

lim
t→∞

1
t

log |x(t)| = 1 a.s.

That is, the stochastically perturbed system (5.2) becomes almost surely expo-
nentially unstable.

On the other hand, it has also been observed that noise can have a stabi-
lizing effect as well. For example, consider a scalar unstable system

ẏ(t) = y(t) on t ≥ t0, y(t0) = x0 ∈ R (5.3)

Perturb this system by noise and suppose that the perturbed system has the
form

dx(t) = x(t)dt + 2x(t)dB(t) on t ≥ t0, x(t0) = x0 ∈ R, (5.4)

where B(t) is again a one-dimensional Brownian motion. Equation (5.4) has the
explicit solution

x(t) = x0 exp
[
−(t− t0) + 2(B(t)−B(t0))

]
,

which yields immediately that

lim
t→∞

1
t

log |x(t)| = −1 a.s.

That is, the perturbed system (5.4) becomes stable. In other words, the noise
has stabilized the unstable system (5.3).

In this section we shall establish a general theory of stochastic stabilization
and destabilization for a given nonlinear system. Suppose that the given system
is described by a nonlinear ordinary differential equation

ẏ(t) = f(y(t), t) on t ≥ t0, y(t0) = x0 ∈ Rd. (5.5)
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Here f : Rd × R+ → Rd is a locally Lipschitz continuous function and particu-
larly, for some K > 0,

|f(x, t)| ≤ K|x| for all (x, t) ∈ Rd ×R+. (5.6)

We now use the m-dimensional Brownian motion B(t) = (B1(t), · · · , Bm(t))T

as the source of noise to perturb the given system. For simplicity, suppose the
stochastic perturbation is of a linear form, that is the stochastically perturbed
system is described by the semilinear Itô equation

dx(t) = f(x(t), t)dt +
m∑

i=1

Gix(t)dBi(t) on t ≥ t0, x(t0) = x0 ∈ Rd, (5.7)

where Gi, 1 ≤ i ≤ m, are all d × d matrices. Clearly, equation (5.7) has a
unique solution denoted by x(t; t0, x0) again and, moreover, it admits a trivial
solution x(t) ≡ 0. Let us begin to discuss how the stochastic perturbation affect
the property of stability or instability of the given system (5.5), and we shall see
that different choices of Gi make the thing different.

Theorem 5.1 Let (5.6) hold. Assume that there are two constants λ > 0 and
ρ ≥ 0 such that

m∑
i=1

|Gix|2 ≤ λ|x|2 and
m∑

i=1

|xT Gix|2 ≥ ρ|x|4 (5.8)

for all x ∈ Rd. Then

lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ −
(
ρ−K − λ

2

)
a.s. (5.9)

for all x0 ∈ Rd. In particular, if ρ > K+ 1
2λ, then the trivial solution of equation

(5.7) is almost surely exponentially stable.

Proof. Let V (x, t) = |x|2. Then

LV (x, t) = 2xT f(x, t) +
m∑

i=1

|Gix|2 ≤ (2K + λ)|x|2.

Moreover, with g(x, t) = (G1x, · · · , Gmx),

|Vx(x, t)g(x, t)|2 = 4
m∑

i=1

|xT Gix|2 ≥ 4ρ|x|4.

An application of Theorem 3.3 yields the desired assertion (5.8).
Let us now consider some special cases of equation (5.7). First of all, let

Gi = σiI for 1 ≤ i ≤ m, where I is the d× d identity matrix and σi a constant.
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These σi’s represent the intensity of the stochastic perturbation. In this case,
equation (5.7) becomes

dx(t) = f(x(t), t)dt +
m∑

i=1

σix(t)dBi(t). (5.10)

Moreover,

m∑
i=1

|Gix|2 =
m∑

i=1

σ2
i |x|2 and

m∑
i=1

|xT Gix|2 =
m∑

i=1

σ2
i |x|4.

By Theorem 5.1, the solution of equation (5.10) has the property

lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ −
(1

2

m∑
i=1

σ2
i −K

)
a.s.

Therefore, the trivial solution of equation (5.10) is almost surely exponentially
stable provided 1

2

∑m
i=1 σ2

i > K. An even simpler case is that when σi = 0 for
2 ≤ i ≤ m, i.e. the equation

dx(t) = f(x(t), t)dt + σ1x(t)dB1(t).

The trivial solution of this equation is almost surely exponentially stable pro-
vided 1

2σ2
1 > K. These show that if we add a strong enough stochastic pertur-

bation to the given system (5.5), then the system is stabilized. We summarize
these as a theorem.

Theorem 5.2 Any nonlinear system ẏ(t) = f(y(t), t) can be stabilized by Brow-
nian motions provided (5.6) is satisfied. Moreover, one can even use only a scalar
Brownian motion to stabilize the system.

Theorem 5.1 ensures that there are many choices for the matrices Bi in
order to stabilize a given system and of course the above choices are just the
simplest ones. For illustration, we give one more example here. For each i,
choose a positive-definite matrix Di such that

xT Dix ≥
√

3
2
||Di|| |x|2.

Obviously, there are many such matrices. Let σ be a constant and Gi = σDi.
Then

m∑
i=1

|Gix|2 ≤ σ2
m∑

i=1

||Di||2|x|2

and
m∑

i=1

|xT Gix|2 ≥
3σ2

4

m∑
i=1

||Di||2|x|4.
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By Theorem 5.1, the solution of equation (5.7) satisfies

lim sup
t→∞

1
t

log |x(t; t0, x0)| ≤ −
(σ2

4

m∑
i=1

||Di||2 −K
)

a.s.

Therefore the trivial solution of equation (5.7) is almost surely exponentially
stable if

σ2 >
4K∑m

i=1 ||Di||2
.

Let us now turn to consider the opposite problem—stochastic destabiliza-
tion. It is not difficult to apply Theorem 3.5 to show the following result and
the details are left to the reader.

Theorem 5.3 Let (5.6) hold. Assume that there are two positive constants λ
and ρ such that

m∑
i=1

|Gix|2 ≥ λ|x|2 and
m∑

i=1

|xT Gix|2 ≤ ρ|x|4

for all x ∈ Rd. Then

lim inf
t→∞

1
t

log |x(t; t0, x0)| ≥
(λ

2
−K − ρ

)
a.s.

for all x0 6= 0. In particular, if λ > 2(K+ρ), then the trivial solution of equation
(5.7) is almost surely exponentially unstable.

We now employ this theorem to show how one can use stochastic pertur-
bation to destabilize the given system. First of all, let the dimension of the
state space d ≥ 3 and choose the dimension of the Brownian motion to be the
same, i.e. m = d. Let σ be a constant. For each i = 1, 2, · · · , d − 1, define the
d× d matrix Gi = (gi

uv) by gi
uv = σ if u = i and v = i + 1 or otherwise gi

uv = 0.
Moreover, define Gd = (gd

uv) by gd
uv = σ if u = d and v = 1 or otherwise gd

uv = 0.
Then equation (5.7) becomes

dx(t) = f(x(t), t)dt + σ


x2(t)dB1(t)

...
xd(t)dBd−1(t)
x1(t)dBd(t)

 . (5.11)

Compute that
m∑

i=1

|Gix|2 =
m∑

i=1

(σxi+1)2 = σ2|x|2

and
m∑

i=1

|xT Gix|2 = σ2
m∑

i=1

x2
i x

2
i+1,
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where we use xd+1 = x1. Noting

m∑
i=1

x2
i x

2
i+1 ≤

1
2

m∑
i=1

(x4
i + x4

i+1) =
m∑

i=1

x4
i ,

we have

3
m∑

i=1

x2
i x

2
i+1 ≤ 2

m∑
i=1

x2
i x

2
i+1 +

m∑
i=1

x4
i ≤ |x|4.

Therefore
m∑

i=1

|xT Gix|2 ≤
σ2

3
|x|4.

By Theorem 5.3, the solution of equation (5.11) has the property that

lim inf
t→∞

1
t

log |x(t; t0, x0)| ≥
(σ2

2
−K − σ2

3

)
=

σ2

6
−K a.s.

for any x0 6= 0. If σ2 > 6K, then the trivial solution of equation (5.11) will be
almost surely exponentially unstable.

Secondly, let the dimension of the state space d be an even number, say
d = 2k(k ≥ 1). let σ be a constant. Define

G1 =


0 σ
−σ 0 0

. . .

0 0 σ
−σ 0


but set Gi = 0 for 2 ≤ i ≤ m. So equation (5.7) becomes

dx(t) = f(x(t), t)dt + σ


x2(t)
−x1(t)

...
x2k(t)

−x2k−1(t)

 dB1(t). (5.12)

In this case we have

m∑
i=1

|Gix|2 = σ2|x|2 and
m∑

i=1

|xT Gix|2 = 0

Hence, by Theorem 5.3, the solution of equation (5.12) has the property that

lim inf
t→∞

1
t

log |x(t; t0, x0)| ≥
σ2

2
−K a.s.
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for any x0 6= 0. If σ2 > 2K, then the trivial solution of equation (5.12) will be
almost surely exponentially unstable. Summarizing these results we obtain the
following conclusion.

Theorem 5.4 Any d-dimensional nonlinear system ẏ(t) = f(y(t), t) can be
destabilized by Brownian motions provided the dimension d ≥ 2 and (5.6) is
satisfied.

Naturally one may ask what happens to one-dimensional systems. To an-
swer this let us look at the scalar linear Itô equation

dx(t) = −ax(t) +
m∑

i=1

bix(t)dBi(t) on t ≥ t0 (5.13)

with initial data x(t0) = x0. This equation is regarded as the stochastically
perturbed system of the exponentially stable system

ẏ(t) = −ay(t) (a > 0).

It has been shown that the sample Lyapunov exponent of the solution is

lim
t→∞

1
t

log |x(t; t0, x0)| = −a− 1
2

m∑
i=1

b2
i < 0 a.s.

That is, the perturbed system (5.13) remains stable. We therefore see that the
exponentially stable system ẏ(t) = ay(t) ( a < 0) cannot be destabilized by
Brownian motions if we restrict the stochastic perturbation in the linear form
of

∑m
i=1 bix(t)dBi(t).

4.6 FURTHER TOPICS

If the coefficients f and g in equation (1.2) are such that f(0, t) 6≡ 0 and
g(0, t) 6≡ 0 but f has the decomposition f(x, t) = f1(x, t)+f2(x, t) with f1(0, t) ≡
0, then we can regard the equation

dx(t) = [f1(x(t), t) + f2(x(t), t)]dt + g(x(t), t)dw(t) (6.1)

as the stochastically perturbed system of the ordinary differential equation

ẏ(t) = f1(y(t), t). (6.2)

In this case, the equilibrium position is a solution of the unperturbed system
(6.2) but no longer of the perturbed system (6.1). However, we can in principle
apply our definitions of stability. For example, consider a d-dimensional linear
stochastic differential equation in the narrow sense

dx(t) = [Ax(t) + F (t)]dt + G(t)dB(t) on t ≥ t0 (6.3)
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with initial value x(t0) = x0 ∈ Rd, where

A ∈ Rd×d, F : R+ → Rd, G : R+ → Rd×m.

We impose two hypotheses: (i) The eigenvalues of A have negative real parts.
This is equivalent to that there is a pair of positive constants β1 and λ1 such
that

||eAt||2 ≤ β1e
−λ1t for t ≥ 0. (6.4)

(ii) There is also a pair of positive constants β2 and λ2 such that

|F (t)|2 ∨ |G(t)|2 ≤ β2e
−λ2t for t ≥ 0. (6.5)

It was shown in Chapter 3 that the solution of equation (6.3) is

x(t) = eA(t−t0)x0 +
∫ t

t0

eA(t−s)F (s)ds +
∫ t

t0

eA(t−s)G(s)dB(s). (6.6)

So

E|x(t)|2

≤ 3|eA(t−t0)x0|2 + 3(t− t0)
∫ t

t0

|eA(t−s)F (s)|2ds + 3
∫ t

t0

|eA(t−s)G(s)|2ds

≤ 3β1|x0|2e−λ1(t−t0) + 3β1β2(t− t0 + 1)
∫ t

t0

e−λ1(t−s)−λ2sds

≤ 3β1|x0|2e−λ1(t−t0) + 3β1β2(t− t0 + 1)
∫ t

t0

e−(λ1∧λ2)(t−s)−(λ1∧λ2)sds

≤ 3β1|x0|2e−λ1(t−t0) + 3β1β2(t− t0 + 1)(t− t0)e−(λ1∧λ2)t. (6.7)

This implies

lim sup
t→∞

1
t

log(E|x(t)|2) ≤ −(λ1 ∧ λ2). (6.8)

Now let 0 < ε < (λ1 ∧ λ2)/2 be arbitrary. Set

c1 = 3β1|x0|2 + 3β1β2 sup
t≥t0

[
(t− t0 + 1)(t− t0)e−εt

]
.

It then follows from (6.7) that

E|x(t)|2 ≤ c1e
−(λ1∧λ2−ε)(t−t0) on t ≥ t0.

Let n = 1, 2, · · ·. Note that for t0 + n− 1 ≤ t ≤ t0 + n,

x(t) = x(t0 + n− 1) +
∫ t

t0+n−1

[Ax(s) + F (s)]ds +
∫ t

t0+n−1

G(s)dB(s).
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Using Hölder’s inequality, Doob’s martingale inequality etc. we can derive that

E
(

sup
t0+n−1≤t≤t0+n

|x(t)|2
)
≤ 3E|x(t0 + n− 1)|2

+ 3E

∫ t0+n

t0+n−1

|Ax(s) + F (s)|2ds + 12
∫ t0+n

t0+n−1

|G(s)|2ds

≤ 3c1e
−(λ1∧λ2−ε)(n−1) + 6

∫ t0+n

t0+n−1

(
c1||A||2e−(λ1∧λ2−ε)(s−t0) + 3β2e

−λ2s
)
ds

≤ c2e
−(λ1∧λ2−ε)(n−1),

where c2 is a constant. From this we can show in the same way as the proof of
Theorem 4.2 that

lim sup
t→∞

1
t

log |x(t)| ≤ −λ1 ∧ λ2 − 2ε

2
a.s.

Since ε is arbitrary, we must have

lim sup
t→∞

1
t

log |x(t)| ≤ −λ1 ∧ λ2

2
a.s. (6.9)

In other words, we have shown that, under hypotheses (i) and (ii), the solution of
equation (6.3) will tend to zero exponentially in mean square and almost surely
as well. For the further details in this direction please see the author’s earlier
books Mao (1991a, 1994a)

Let us now turn to the another topic. In the case of stochastic asymptotic
stability in the large, we know that all the solutions will tend to zero almost
surely but we do not know how fast. To improve this situation we introduce the
almost sure exponential stability, and in this case we do know that the solutions
will tend to zero almost surely exponentially fast. However, we may sometimes
find that the solutions will tend to zero but not so fast as exponentially or faster,
and we wish to determine more precisely how fast they tend to zero. To explain,
let us consider a scalar linear stochastic differential equation

dx(t) = − p

1 + t
x(t)dt + (1 + t)−pdB(t) on t ≥ t0 (6.10)

with initial value x(t0) = x0 ∈ R, where p > 1
2 and B(t) is a scalar Brownian

motion. The solution of equation (6.10) is

x(t) = x0 exp
(
−

∫ t

t0

p

1 + r
dr

)
+

∫ t

t0

exp
(
−

∫ t

s

p

1 + r
dr

)
(1 + s)−pdB(s)

= x0

( 1 + t

1 + t0

)−p

+
∫ t

t0

( 1 + t

1 + s

)−p

(1 + s)−pdB(s)

=
[
x0(1 + t0)p + B(t)−B(t0)

]
(1 + t)−p. (6.11)
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Therefore the sample Lyapunov exponent

lim
t→∞

1
t

log |x(t)| = 0 a.s.

which indicates that almost all the sample paths of the solution will not tend to
zero exponentially. On the other hand, by the law of the iterated logarithm, we
note that for almost all ω ∈ Ω there is a sufficiently large T = T (ω) such that

|B(t)−B(t0)| ≤ 2
√

2(t− t0) log log(t− t0) if t ≥ T.

It therefore follows from (6.11) that, almost surely,

|x(t)| ≤
[
|x0|(1 + t0)p + 2

√
2(t− t0) log log(t− t0)

]
(1 + t)−p

whenever t ≥ T . Thus, for any 0 < ε < p− 1
2 , there is a finite random variable

ξ such that
|x(t)| ≤ ξt−(p− 1

2−ε) for all t ≥ t0 (6.12)

almost surely. This means that the solution will tend to zero almost surely
polynomially. It is much nicer to express (6.12) as

lim sup
t→∞

log |x(t)|
log t

≤ −
(
p− 1

2

)
a.s. (6.13)

since (6.12) implies

lim sup
t→∞

log |x(t)|
log t

≤ −
(
p− 1

2
− ε

)
a.s.

and ε is arbitrary. Motivated by this example the author introduced in 1991 the
concept of almost sure polynomial stability. A detailed study of such stability
can be found in Mao (1991a).

We shall now take one further step to introduce a more general type of sta-
bility. Note that the almost sure exponential stability means |x(t)| ≤ ξe−λt a.s.
while the almost sure polynomial stability means |x(t)| ≤ ξt−λ a.s. Replacing
the function e−λt or t−λ with a more general function λ(t) leads to the following
new definition.

Definition 6.1 Let λ : R+ → (0,∞] be a continuous nonincreasing function
such that λ(t) → 0 as t → ∞. The trivial solution of equation (1.2) is said to
be almost surely asymptotically stable with rate function λ(t) if

|x(t; t0, x0)| ≤ ξλ(t) for all t ≥ t0 (6.14)

almost surely, where ξ is a finite random variable which depends on x0 and t0.
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Due to the page limit we establish only one simple criterion on such stability
here.

Theorem 6.2 Let p > 0 and V (x, t) ∈ C2,1(Rd×[t0,∞);R+). Let γ : R+ → R+

be a continuous nondecreasing function such that γ(t) → ∞ as t → ∞. Let
η : R+ → R+ be a continuous function such that

∫∞
0

η(t)dt < ∞. If

γ(t)|x|p ≤ V (x, t) and LV (x, t) ≤ η(t) (6.15)

for all (x, t) ∈ Rd × [t0,∞), then the trivial solution of equation (1.2) is almost
surely asymptotically stable with rate function λ(t) = (γ(t))−1/p.

Proof. Fix any initial value x0 and write x(t; t0, x0) = x(t). By Itô’s formula,

V (x, t) = V (x0, t0) +
∫ t

t0

LV (x(s), s)ds + M(t),

where

M(t) =
∫ t

t0

Vx(x(s), s)g(x(s), s)dB(s)

is a continuous local martingale on [t0,∞) with M(t0) = 0. Using condition
(6.15) we obtain that

0 ≤ γ(t)|x(t)|p ≤ V (x0, t0) +
∫ t

t0

η(s)ds + M(t).

In view of Theorem 1.3.9, limt→∞M(t) exists and is finite almost surely, and
hence there is a finite random variable ξ such that

γ(t)|x(t)|p ≤ ξ i.e. |x(t)| ≤
(

ξ

γ(t)

) 1
p

a.s.

The proof is complete.
For illustration we first apply this theorem to equation (6.10). Let 0 < ε <

p− 1
2 be arbitrary and

V (x, t) = (t + 1)2p−1−2εx2.

Compute
LV (x, t) = (2p− 1− 2ε)(t + 1)2p−2−2εx2

− 2p(t + 1)2p−2−2εx2 + (t + 1)−(1+2ε)

≤ (t + 1)−(1+2ε)

and note ∫ ∞

0

(t + 1)−(1+2ε)dt =
1
2ε

< ∞.
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By Theorem 6.2, with p = 2, γ(t) = (t+1)2p−1−2ε and η(t) = (t+1)−(1+2ε), we
see that the trivial solution of equation (6.10) is almost surely asymptotically
stable with rate function λ(t) = (t + 1)−(p−1/2−ε). In other words, the solution
of equation (6.10) has the property that

|x(t; t0, x0)| ≤ ξ(t + 1)−(p− 1
2−ε)

for all t ≥ t0 almost surely, where ξ is a finite random variable. This implies, for
ε is arbitrary, that

lim sup
t→∞

log |x(t; t0, x0)|
log t

≤ −
(
p− 1

2

)
a.s.

which is the same as (6.13).
To close this chapter let us discuss one more example. Consider a stochastic

differential equation in Rd of the form

dx(t) = f(x(t), t)dt + σ(t)dB(t) on t ≥ t0 (6.16)

with initial value x(t0) = x0, where f is the same as before but σ : R+ → Rd×m.
Assume that, for some p > 0,

2xT f(x, t) ≤ − p|x|2

(t + 1) log(t + 1)
and

∫ ∞

0

log(t + 1)|σ(t)|2dt < ∞.

Let V (x, t) = logp(t + 1)|x|2. Then

LV (x, t) =
p logp−1(t + 1)

t + 1
|x|2 + 2 logp(t + 1)xT f(x, t) + logp(t + 1)|σ(t)|2

≤ logp(t + 1)|σ(t)|2.

By Theorem 6.2, with p = 2, γ(t) = logp(t+1) and η(t) = logp(t+1)|σ(t)|2, we
see that the trivial solution of equation (6.16) is almost surely asymptotically
stable with rate function λ(t) = log−p/2(t + 1).



5

Stochastic

Functional Di�erential Equations

5.1 INTRODUCTION

In many applications, one assumes that the system under consideration is gov-
erned by a principle of causality; that is, the future state of the system is in-
dependent of the past states and is determined solely by the present. However,
under closer scrutiny, it becomes apparent that the principle of causality is often
only a first approximation to the true situation and that a more realistic model
would include some of the past states of the system. Stochastic functional dif-
ferential equations give a mathematical formulation for such system.

The simplest type of past dependence in a differential equation is that in
which the past dependence is through the state variable but not the derivative
of the state variable. Lord Cherwell (see Wright (1961)) has encountered the
differential difference equation

ẋ(t) = −αx(t− 1)[1 + x(t)] (1.1)

in his study of the distribution of primes. Dunkel (1968) suggested the more
general equation

ẋ(t) = −α
[∫ 0

−1

x(t+ θ)dη(θ)
]
[1 + x(t)] (1.2)

for the growth of a single species. In his study of predator-prey models, Volterra

147
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(1928) had earlier investigated the equation
ẋ(t) =

(
ε1 − γ1y(t)−

∫ 0

−r

F1(θ)y(t+ θ)dθ
)
x(t)

ẏ(t) =
(
ε2 + γ2x(t) +

∫ 0

−r

F2(θ)y(t+ θ)dθ
)
y(t)

(1.3)

where x and y are the number of prey and predators, respectively. Under suitable
assumptions, the equation

ẋ(t) =
k∑

i=1

Aix(t− τi) (1.4)

is a suitable model for describing the mixing of a dye from a central tank as
dyed water circulates through a number of pipes. The equation

ẋ(t) = −
∫ t

t−τ

a(t− θ)g(x(θ))dθ (1.5)

was encountered by Ergen (1954) in the theory of a circulating fuel nuclear reac-
tor. Taking into account the transmission time in the triode oscillator, Rubanik
(1969) has studied the van der Pol equation

ẍ(t) + αẋ(t)− f(x(t− τ))ẋ(t− τ) + x(t) = 0 (1.6)

with the delayed argument τ . All these equations are special cases of the general
functional differential equation

ẋ(t) = f(xt, t), (1.7)

where xt = {x(t + θ) : −τ ≤ θ ≤ 0} is the past history of the state. Taking
into account the environmental noise we are led to the stochastic functional
differential equation

dx(t) = f(xt, t)dt+ g(xt, t)dB(t). (1.8)

When we try to carry over the theory of stochastic differential equations to
stochastic functional differential equations, the following natural questions arise:

· What is the initial-value problem for equation (1.8)?
· What are the conditions to guarantee the existence and uniqueness of the

solution?
· What properties does the solution have?
· Is there any explicit solution? If there is not, how can one obtain the

approximate solution?
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In this chapter we shall answer these questions one by one. Moreover, we shall
introduce a new technique—the Razumikhin argument to investigate the stabil-
ity problem. We shall also introduce and investigate the problem of stochastic
self-stabilization.

5.2 EXISTENCE-AND-UNIQUENESS THEOREMS

As before, we are working on the given complete probability space (Ω,F , P )
with the filtration {Ft}t≥0 satisfying the usual conditions, and B(t) is the given
m-dimensional Brownian motion defined on the space. Let τ > 0 and denote by
C([−τ, 0];Rd) the family of continuous functions ϕ from [−τ, 0] to Rd with the
norm ||ϕ|| = sup−τ≤θ≤0 |ϕ(θ)|. Let 0 ≤ t0 < T <∞. Let

f : C([−τ, 0];Rd)× [t0, T ] → Rd and g : C([−τ, 0];Rd)× [t0, T ] → Rd×m

be both Borel measurable. Consider the d-dimensional stochastic functional
differential equation

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T, (2.1)

where xt = {x(t + θ) : −τ ≤ θ ≤ 0} is regarded as a C([−τ, 0];Rd)-valued
stochastic process.

The first question is the following: What is the initial-value problem for
this equation? More specifically, what is the minimum amount of initial data
that must be specified in order for equation (2.1) to define a stochastic process
x(t) on t0 ≤ t ≤ T? A moment of reflection indicates that a stochastic process
must be specified on the entire interval [t0 − τ, t0]. We therefore impose the
initial data:

xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} is an Ft0-measurable

C([−τ, 0];Rd)-valued random variable such that E||ξ||2 <∞.
(2.2)

The initial-value problem for equation (2.1) is now to find the solution of equation
(2.1) satisfying the initial data (2.2). But, what is the solution?

Definition 2.1 An Rd-valued stochastic process x(t) on t0 − τ ≤ t ≤ T is
called a solution to equation (2.1) with initial data (2.2) if it has the following
properties:

(i) it is continuous and {xt}t0≤t≤T is Ft-adapted;
(ii) {f(xt, t)} ∈ L1([t0, T ];Rd) and {g(xt, t)} ∈ L2([t0, T ];Rd×m);
(iii) xt0 = ξ and, for every t0 ≤ t ≤ T ,

x(t) = ξ(0) +
∫ t

t0

f(xs, s)ds+
∫ t

t0

g(xs, s)dB(s) a.s.
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A solution x(t) is said to be unique if any other solution x̄(t) is indistinguishable
from it, that is

P{x(t) = x̄(t) for all t0 − τ ≤ t ≤ T} = 1.

Let us now begin to establish the theory of the existence and uniqueness of
the solution. We first show that the Lipschitz condition and the linear growth
condition again guarantee the existence and uniqueness.

Theorem 2.2 Assume that there exist two positive constants K̄ and K such
that
(i) (uniform Lipschitz condition) for all ϕ, φ ∈ C([−τ, 0];Rd) and t ∈ [t0, T ]

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ K̄||ϕ− φ||2; (2.3)

(ii) (linear growth condition) for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0, T ]

|f(ϕ, t)|2
∨
|g(ϕ, t)|2 ≤ K(1 + ||ϕ||2). (2.4)

Then there exists a unique solution x(t) to equation (2.1) with initial data (2.2).
Moreover, the solution belongs to M2([t0 − τ, T ];Rd).

We prepare a lemma in order to prove this theorem.

Lemma 2.3 Let the linear growth condition (2.4) hold. If x(t) is a solution to
equation (2.1) with initial data (2.2), then

E
(

sup
t0−τ≤t≤T

|x(t)|2
)
≤ (1 + 4E||ξ||2)e3K(T−t0)(T−t0+4). (2.5)

In particular, x(t) belongs to M2([t0 − τ, T ];Rd).

Proof. For every integer n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : ||xt|| ≥ n}.

Clearly, τn ↑ T a.s. Set xn(t) = x(t∧τn) for t ∈ [t0−τ, T ]. Then, for t0 ≤ t ≤ T ,

xn(t) = ξ(0) +
∫ t

t0

f(xn
s , s)I[[t0,τn]](s)ds+

∫ t

t0

g(xn
s , s)I[[t0,τn]](s)dB(s).

By Hölder’s inequality, Doob’s martingale inequality and the linear growth con-
dition, we then show that

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ 3E|ξ(0)|2 + 3K(T − t0 + 4)

∫ t

t0

(1 + E||xn
s ||2)ds.
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Noting that supt0−τ≤s≤t |xn(s)|2 ≤ ||ξ||2 + supt0≤s≤t |xn(s)|2, we obtain

1 + E
(

sup
t0−τ≤s≤t

|xn(s)|2
)

≤ 1 + 4E||ξ||2 + 3K(T − t0 + 4)
∫ t

t0

[
1 + E

(
sup

t0−τ≤r≤s
|xn(r)|2

)]
ds.

Now the Gronwall inequality yields that

1 + E
(

sup
t0−τ≤t≤T

|xn(t)|2
)
≤ (1 + 4E||ξ||2)e3K(T−t0)(T−t0+4).

Consequently

E
(

sup
t0−τ≤t≤τn

|x(t)|2
)
≤ (1 + 4E|ξ|2)e3K(T−t0)(T−t0+4).

Finally the required inequality (2.5) follows by letting n→∞.

Proof of Theorem 2.2. Uniqueness. Let x(t) and x̄(t) be the two solutions. By
Lemma 2.3, both of them belong to M2([t0 − τ, T ];Rd). Noting

x(t)− x̄(t) =
∫ t

t0

[f(xs, s)− f(x̄s, s)]ds+
∫ t

t0

[g(xs, s)− g(x̄s, s)]dB(s),

we can easily show that

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 2K̄(T + 4)

∫ t

t0

E||xs − x̄s||2ds

≤ 2K̄(T + 4)
∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− x̄(r)|2
)
ds.

The Gronwall inequality then yields that

E
(

sup
t0≤t≤T

|x(t)− x̄(t)|2
)

= 0.

This implies that x(t) = x̄(t) for t0 ≤ t ≤ T , hence for all t0− τ ≤ t ≤ T , almost
surely. The uniqueness has been proved.

Existence. Define x0
t0 = ξ and x0(t) = ξ(0) for t0 ≤ t ≤ T . For each

n = 1, 2, · · ·, set xn
t0 = ξ and define, by the Picard iterations,

xn(t) = ξ(0) +
∫ t

t0

f(xn−1
s , s)ds+

∫ t

t0

g(xn−1
s , s)dB(s) (2.6)
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for t ∈ [t0, T ]. It is easy to show that xn(·) ∈M2([t0− τ, T ];Rd) (the details are
left to the reader). We claim that for all n ≥ 0,

E
(

sup
t0≤s≤t

|xn+1(s)− xn(s)|2
)
≤ C[M(t− t0)]n

n!
on t0 ≤ t ≤ T, (2.7)

where M = 2K̄(T − t0 + 4) and C will be defined below. First we compute

E
(

sup
t0≤t≤T

|x1(t)− x0(t)|2
)

≤ 2K(T − t0)
∫ T

t0

(1 + E||x0
s||2)ds+ 8K

∫ T

t0

(1 + E||x0
s||2)ds

≤2K(T − t0 + 4)(T − t0)(1 + E||ξ||2) := C.

So (2.7) holds for n = 0. Next, assume (2.7) holds for some n ≥ 0. Then

E
(

sup
t0≤s≤t

|xn+2(s)− xn+1(s)|2
)

≤ 2K̄(t− t0 + 4)E
∫ t

t0

||xn+1
s − xn

s ||2ds

≤M

∫ t

t0

E
(

sup
t0≤r≤s

|xn+1(r)− xn(r)|2
)
ds

≤M

∫ t

t0

C[M(s− t0)]n

n!
ds =

C[M(t− t0)]n+1

(n+ 1)!
.

That is, (2.7) holds for n + 1. Hence, by induction, (2.7) holds for all n ≥ 0.
From (2.7), we can then show in the same way as in the proof of Theorem 2.3.1
that xn(·) converges to x(t) in M2([t0 − τ, T ];Rd) in the sense of L2 as well as
probability 1, and the x(t) is a solution to equation (2.1) satisfying the initial
condition (2.2). The existence has also been proved.

In the proof above we have shown that the Picard iterations xn(t) converge
to the unique solution x(t) of equation (2.1). The following theorem gives an
estimate on the difference between xn(t) and x(t), and it clearly shows that one
can use the Picard iteration procedure to obtain the approximate solutions to
equation (2.1).

Theorem 2.4 Let the assumptions of Theorem 2.2 hold. Let x(t) be the unique
solution of equation (2.1) with initial data (2.2) and xn(t) be the Picard iterations
defined by (2.6). Then, for all n ≥ 1,

E

(
sup

t0≤t≤T
|xn(t)− x(t)|2

)
≤ 2C[M(T − t0)]n

n!
e2M(T−t0) (2.8)

where C = 2K(T − t0 + 4)(T − t0)(1 + E||ξ||2) and M = 2K̄(T − t0 + 4).
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Proof. It is easy to derive that

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)
≤M

∫ t

t0

E||xn−1
s − xs||2ds

≤ 2M
∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)− xn−1(r)|2

)
ds

+2M
∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)− x(r)|2

)
ds.

Substituting (2.7) into this yields that

E

(
sup

t0≤s≤t
|xn(s)− x(s)|2

)
≤ 2M

∫ T

t0

C[M(s− t0)]n−1

(n− 1)!
ds+ 2M

∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)− x(r)|2

)
ds

≤ 2C[M(T − t0)]n

n!
+ 2M

∫ t

t0

E

(
sup

t0≤r≤s
|xn(r)− x(r)|2

)
ds.

The required inequality (2.8) now follows by applying the Gronwall inequality.
The proof is complete.

As pointed out in the study of stochastic differential equations, the uniform
Lipschitz condition is somewhat restrictive. Fortunately, the following general-
ization ensures that one can replace it by the local Lipschitz condition.

Theorem 2.5 Assume that the linear growth condition (2.4) is satisfied but
the uniform Lipschitz condition (2.3) is replaced by the following local Lipschitz
condition: For every integer n ≥ 1, there exists a positive constant Kn such that,
for all t ∈ [t0, T ] and those ϕ, φ ∈ C([−τ, 0];Rd) with ||ϕ|| ∨ ||φ|| ≤ n,

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ Kn||ϕ− φ||2. (2.9)

Then there exists a unique solution x(t) to the initial-value problem (2.1)-(2.2),
and the solution belongs to M2([t0 − τ, T ];Rd).

This theorem can be proved by a truncation procedure as outlined in the
proof of Theorem 2.3.4 but the details are left to the reader.

In what follows we often discuss the stochastic functional differential equa-
tion on [t0,∞), namely

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t ∈ [t0,∞) (2.10)

with initial data (2.2), where f and g are of course now the mappings from
C([−τ, 0];Rd) × [t0,∞) to Rd and Rd×m, respectively. If the assumptions of
the existence-and-uniqueness theorem hold on every finite subinterval [t0, T ] of
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[t0,∞), then equation (2.10) has a unique solution x(t) on the entire interval
[t0 − τ,∞). Such a solution is called a global solution. The following theorem is
immediate.

Theorem 2.6 Assume that for every real number T > t0 and integer n ≥ 1,
there exists a positive constant KT,n such that, for all t ∈ [t0, T ] and all ϕ, φ ∈
C([−τ, 0];Rd) with ||ϕ|| ∨ ||φ|| ≤ n,

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ KT,n||ϕ− φ||2.

Assume also that for every T > t0, there exists a positive constant KT such that
for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0, T ],

|f(ϕ, t)|2
∨
|g(ϕ, t)|2 ≤ KT (1 + ||ϕ||2).

Then there exists a unique global solution x(t) to equation (2.10) and the solution
belongs to M2([t0 − τ,∞);Rd).

However, if we remove the linear growth condition but keep the local Lip-
schitz condition, then, as in the case of functional differential equations, the
stochastic functional differential equations may not have global solutions, that
is an explosion may occur at a finite time. In this case, it is necessary to define
local solutions.

Definition 2.7 Let x(t), t ∈ [[t0−τ, σ∞[[ be a continuous Ft-adapted Rd-valued
local process, where σ∞ is a stopping time. It is called a local solution of equation
(2.1) with initial data (2.2) if xt0 = ξ and

x(t ∧ σk) = ξ(0) +
∫ t∧σk

t0

f(xs, s)ds+
∫ t∧σk

t0

g(xs, s)dB(s) ∀t ≥ t0

holds for any k ≥ 1, where {σk}k≥1 is a nondecreasing sequence of finite stopping
times such that σk ↑ σ∞ a.s. Furthermore, if lim supk→∞ |x(t)| = ∞ is satisfied
whenever σ∞ < ∞, it is called a maximal local solution and σ∞ is called the
explosion time. A maximal local solution x(t), t ∈ [[t0 − τ, σ∞[[ is said to be
unique if for any other maximal local solution x̂(t), t ∈ [[t0 − τ, σ̂∞[[, we have
σ∞ = σ̂∞ a.s. and x(t) = x̂(t) for all t ∈ [[t0 − τ, σ̂∞[[ a.s.

Theorem 2.8 Assume that for every integer n ≥ 1, there exists a positive
constant Kn such that, for all t ≥ t0 and those ϕ, φ ∈ C([−τ, 0];Rd) with ||ϕ|| ∨
||φ|| ≤ n,

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ Kn||ϕ− φ||2.

Then there exists a unique maximal local solution x(t) to equation (2.1) with
initial data (2.2).
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This theorem can be proved by the standard truncation procedure as out-
lined in the proof of Theorem 2.3.4 and the details can be found in Mao (1994a)
on pages 95–98.

In this book we shall occasionally encounter a more general type of stochas-
tic functional differential equations in which the future state is determined by
the entire of the past states rather than some of them. For example, we shall
meet the stochastic integrodifferential equation

dx(t) = F (x(t), t)dt+
(∫ t

t0

|x(s)|ds
)
G(x(t), t)dB(t) (2.11)

as well as the functional equation

dx(t) = F (x(t), t)dt+
(

sup
t0≤s≤t

|r(s)x(s)|
)
G(x(t), t)dB(t). (2.12)

To formulate such equations in a general way, let us introduce a few more no-
tations. For each t ≥ t0, denote by C([t0 − τ, t];Rd) the family of continuous
functions ϕ from [t0− τ, t] to Rd with the norm ||ϕ|| = supt0−τ≤θ≤t |ϕ(θ)|. Also,
let f(·, t) and g(·, t) be mappings from C([t0−τ, t];Rd) to Rd and Rd×m, respec-
tively. Moreover, define xτ,t = {x(θ) : t0 − τ ≤ θ ≤ t}. Consider the stochastic
functional differential equation

dx(t) = f(xτ,t, t)dt+ g(xτ,t, t)dB(t) on t ∈ [t0,∞) (2.13)

with initial data (2.2). Obviously, equations (2.11) and (2.12) are the special
cases of equation (2.13). We now state an existence-and-uniqueness theorem for
this equation which can be proved in the same way as before.

Theorem 2.9 Assume that for every real number T > t0 and integer n ≥ 1,
there exists a positive constant KT,n such that, for all t ∈ [t0, T ] and all ϕ, φ ∈
C([t0 − τ, t];Rd) with ||ϕ|| ∨ ||φ|| ≤ n,

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ KT,n||ϕ− φ||2.

Assume also that for every T > t0, there exists a positive constant KT such that
for all t ∈ [t0, T ] and ϕ ∈ C([t0 − τ, t];Rd),

|f(ϕ, t)|2
∨
|g(ϕ, t)|2 ≤ KT (1 + ||ϕ||2).

Then there exists a unique global solution x(t) to equation (2.13) and the solution
belongs to M2([t0 − τ,∞);Rd).
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5.3 STOCHASTIC DIFFERENTIAL DELAY EQUATIONS

A special but important class of stochastic functional differential equations
is the stochastic differential delay equations (SDDEs). Let us begin with the
discussion of the following delay equation

dx(t) = F (x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t) (3.1)

on t ∈ [t0, T ] with initial data (2.2), where F : Rd × Rd × [t0, T ] → Rd and
G : Rd ×Rd × [t0, T ] → Rd×m. If we define

f(ϕ, t) = F (ϕ(0), ϕ(−τ), t) and g(ϕ, t) = G(ϕ(0), ϕ(−τ), t)

for (ϕ, t) ∈ C([−τ, 0];Rd)×[t0, T ], then equation (3.1) can be written as equation
(2.1) so one can apply the existence-and-uniqueness theorems established in the
previous section to the delay equation (3.1). For example, let F and G satisfy
the local Lipschitz condition and the linear growth condition. That is, for every
integer n ≥ 1, there exists a positive constant Kn such that for all t ∈ [t0, T ]
and all x, y, x̄, ȳ ∈ Rd with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ n,

|F (x, y, t)−F (x̄, ȳ, t)|2
∨
|G(x, y, t)−G(x̄, ȳ, t)|2 ≤ Kn(|x−x̄|2+|y−ȳ|2); (3.2)

and there is moreover a K > 0 such that for all (x, y, t) ∈ Rd ×Rd × [t0, T ],

|F (x, y, t)|2
∨
|G(x, y, t)|2 ≤ K(1 + |x|2 + |y|2). (3.3)

Then there is a unique solution to the delay equation (3.1). However, we can
take one further step to weaken these conditions slightly. Note that on [t0, t0+τ ],
equation (3.1) becomes

dx(t) = F (x(t), ξ(t− t0 − τ), t)dt+G(x(t), ξ(t− t0 − τ), t)dB(t)

with initial value x(t0) = ξ(0). But this is a stochastic differential equation
(without delay), and it will have a unique solution if the linear growth condition
(3.3) holds and F (x, y, t), G(x, y, t) are locally Lipschitz continuous in x only.
Once the solution x(t) on [t0, t0 + τ ] is known, we can proceed this argument on
[t0 + τ, t0 +2τ ], [t0 +2τ, t0 +3τ ] etc. and hence obtain the solution on the entire
interval [t0 − τ, T ]. This argument shows that it is unnecessary to require that
the functions F (x, y, t) and G(x, y, t) be locally Lipschitz continuous in y. We
describe this result in the following theorem.

Theorem 3.1 Assume that the linear growth condition (3.3) is fulfilled. Assume
also that both F (x, y, t) and G(x, y, t) are locally Lipschitz continuous in x, that
is, for every integer n ≥ 1, there exists a positive constant Kn such that for all
t ∈ [t0, T ], y ∈ Rd and x, x̄ ∈ Rd with |x| ∨ |x̄| ≤ n,

|F (x, y, t)− F (x̄, y, t)|2
∨
|G(x, y, t)−G(x̄, y, t)|2 ≤ Kn|x− x̄|2. (3.4)
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Then there exists a unique solution to the delay equation (3.1).

This result becomes evident in the case when both F and G are independent
of the present state x(t), namely for the equation

dx(t) = F (x(t− τ), t)dt+G(x(t− τ), t)dB(t).

In this case we have explicitly that

x(t) = x(t0) +
∫ t

t0

F (x(s− τ), s)ds+
∫ t

t0

G(x(s− τ), s)dB(s)

= ξ(t0) +
∫ t

t0

F (ξ(s− t0 − τ), s)ds+
∫ t

t0

G(ξ(s− t0 − τ), s)dB(s)

for t0 ≤ t ≤ t0 + τ . Then, for t0 + τ ≤ t ≤ t0 + 2τ ,

x(t) = x(t0 + τ) +
∫ t

t0+τ

F (x(s− τ), s)ds+
∫ t

t0+τ

G(x(s− τ), s)dB(s).

Repeating this procedure over the intervals [t0 + 2τ, t0 + 3τ ] etc. we can obtain
the explicit solution. Clearly, all we here require is the condition that guarantees
the integrals are well defined, and the linear growth condition will do. In other
words, we do not require the local Lipschitz condition in this case.

Consider a 1-dimensional linear SDDE

dx(t) = [ax(t) + āx(t− τ)]dt

+
m∑

k=1

[bkx(t) + b̄kx(t− τ)]dBk(t) on t ≥ t0

with initial data {x(θ) : t0 − τ ≤ θ ≤ t0} = ξ ∈ L2
Ft0

([−τ, 0];R). On t ∈
[t0, t0 + τ ], the linear SDDE becomes a linear SDE

dx(t) = [ax(t) + α1(t)]dt+
m∑

k=1

[bkx(t) + βk1(t)]dBk(t)

with initial value x(t0) = ξ(0), where

α1(t) = āξ(t− τ), βk1(t) = b̄kξ(t− τ).

This linear SDE has the explicit solution

x(t) = Ψ1(t)
[
ξ(0) +

∫ t

t0

Ψ−1
1 (s)

(
āξ(s− τ)−

m∑
k=1

bk b̄kξ(s− τ)
)
ds

+
m∑

k=1

∫ t

t0

Ψ−1
1 (s)b̄kξ(s− τ)dBk(s)

]
,



158 Stochastic Functional Differential Equations [Ch.5

where

Ψ1(t) = exp
[(
a− 1

2

m∑
k=1

b2k

)
(t− t0) +

m∑
k=1

bk(Bk(t)−Bk(t0))
]
.

Next, on t ∈ [t0 + τ, t0 + 2τ ], the linear SDDE becomes a linear SDE

dx(t) = [ax(t) + α2(t)]dt+
m∑

k=1

[bkx(t) + βk2(t)]dBk(t)

with the initial value x(t0 + τ) at t = τ obtained above , where

α2(t) = āx(t− τ), βk2(t) = b̄kx(t− τ).

This linear SDE has the explicit solution

x(t) = Ψ2(t)
[
x(t0 + τ) +

∫ t

t0+τ

Ψ−1
2 (s)

(
āx(s− τ)−

m∑
k=1

bk b̄kx(s− τ)
)
ds

+
m∑

k=1

∫ t

t0+τ

Ψ−1
2 (s)b̄kx(s− τ)dBk(s)

]
,

where

Ψ2(t) = exp
[(
a− 1

2

m∑
k=1

b2k

)
(t− t0 − τ) +

m∑
k=1

bk(Bk(t)−Bk(t0 + τ))
]
.

Repeating this procedure over the intervals [t0 + 2τ, t0 + 3τ ] etc. we obtain the
explicit solution for the linear SDDE.

Let us now proceed to discuss the equations in which the delay is time
dependent. Let δ : [t0, T ] → [0, τ ] be a Borel measurable function. Consider the
stochastic differential delay equation

dx(t) = F (x(t), x(t− δ(t)), t)dt+G(x(t), x(t− δ(t)), t)dB(t) (3.5)

on t ∈ [t0, T ] with initial data (2.2). This is again a special case of equation
(2.1) if we define

f(ϕ, t) = F (ϕ(0), ϕ(−δ(t)), t) and g(ϕ, t) = G(ϕ(0), ϕ(−δ(t)), t)

for (ϕ, t) ∈ C([−τ, 0];Rd) × [t0, T ]. Hence, conditions (3.2) and (3.3) will guar-
antee the existence and uniqueness of the solution to this delay equation. On
the other hand, if the delay is really “true” in the sense that supt0≤t≤T δ(t) > 0,
then the above argument which led to Theorem 3.1 still works, and therefore
conditions (3.3) and (3.4) will guarantee the existence and uniqueness of the
solution to equation (3.5).
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This argument can be further extended without any difficulty to the more
general stochastic system with several delays, namely

dx(t) = F (x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)dt
+G(x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)dB(t) (3.6)

on t ∈ [t0, T ] with initial data (2.2). Here

F : Rd×(k+1) × [t0, T ] → Rd, G : Rd×(k+1) × [t0, T ] → Rd×m,

and δi : [t0, T ] → [0, τ ] are all Borel-measurable. The following result is imme-
diate.

Theorem 3.2 Assume that for every integer n ≥ 1, there exists a positive
constant Kn such that for all t ∈ [t0, T ] and all x, yi, x̄, ȳi ∈ Rd with |x| ∨ |yi| ∨
|x̄| ∨ |ȳi| ≤ n,

|F (x, y1, · · · , yk, t)− F (x̄, ȳi, · · · , ȳk, t)|2∨
|G(x, y1, · · · , yk, t)−G(x̄, ȳi, · · · , ȳk, t)|2

≤ Kn

(
|x− x̄|2 +

k∑
i=1

|yi − ȳi|2
)
. (3.7)

Assume also that there is a K > 0 such that for all (x, y1, · · · , yk, t) ∈ Rd×(k+1)×
[t0, T ],

|F (x, y1, · · · , yk, t)|2
∨
|G(x, y1, · · · , yk, t)|2 ≤ K

(
1 + |x|2 +

k∑
i=1

|yi|2
)
. (3.8)

Then there is a unique solution to equation (3.6). If,

inf
t0≤t≤T

δi(t) > 0 for every i = 1, · · · , k,

then condition (3.7) can be replaced by the weaker one: For every integer n ≥ 1,
there exists a positive constant Kn such that for all (y1, · · · , yk, t) ∈ Rd×k×[t0, T ]
and all x, x̄ ∈ Rd with |x| ∨ |x̄| ≤ n,

|F (x, y1, · · · , yk, t)− f(x̄, yi, · · · , yk, t)|2∨
|G(x, y1, · · · , yk, t)−G(x̄, yi, · · · , yk, t)|2

≤ Kn|x− x̄|2. (3.9)
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5.4 EXPONENTIAL ESTIMATES

In this section we shall give the exponential estimates for the solution of
equation (2.10), namely

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t ∈ [t0,∞) (4.1)

with initial data xt0 = ξ satisfying (2.2). We assume that this equation has a
unique global solution x(t). We also impose the linear growth condition: There
is a K > 0 such that

|f(ϕ, t)|2
∨
|g(ϕ, t)|2 ≤ K(1 + ||ϕ||2) (4.2)

for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0,∞). Let us first establish an Lp-estimate.

Theorem 4.1 Let p ≥ 2, E||ξ||p <∞ and let (4.2) hold. Then

E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤ 3

2
2

p
2 (1 + E||ξ||p)eC(t−t0) (4.3)

for all t ≥ t0, where C = p
[
2
√
K + (33p− 1)K

]
.

Proof. By the Itô formula and the linear growth condition, one can derive that,
for t ≥ t0,[

1 + |x(t)|2
] p

2 =
[
1 + |ξ(0)|2

] p
2 + p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)f(xs, s)ds

+
p

2

∫ t

t0

[
1 + |x(s)|2

] p−2
2 |g(xs, s)|2ds

+
p(p− 2)

2

∫ t

t0

[
1 + |x(s)|2

] p−4
2 |xT (s)g(xs, s)|2ds

+ p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)g(xs, s)dB(s)

≤ 2
p−2
2 (1 + |ξ(0)|p) + p

∫ t

t0

[
1 + |x(s)|2

] p−2
2

×
(√

K

2
|x(s)|2 +

1
2
√
K
|f(xs, s)|2 +

p− 1
2

|g(xs, s)|2
)
ds

+ p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)g(xs, s)dB(s)

≤ 2
p−2
2 (1 + ||ξ||p) + c1

∫ t

t0

[
1 + ||xs||2

] p
2 ds

+ p

∫ t

t0

[
1 + |x(s)|2

] p−2
2 xT (s)g(xs, s)dB(s), (4.4)
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where c1 = p
[√
K + (p− 1)K/2

]
. Therefore

E

(
sup

t0≤s≤t

[
1 + |x(s)|2

] p
2

)
≤ 2

p−2
2 (1 + E||ξ||p) + c1E

∫ t

t0

[
1 + ||xs||2

] p
2 ds

+ pE

(
sup

t0≤s≤t

∫ s

t0

[
1 + |x(r)|2

] p−2
2 xT (r)g(xr, r)dB(r)

)
. (4.5)

On the other hand, by the Burkholder–Davis–Gundy inequality (i.e. Theorem
1.7.3), we derive that

pE

(
sup

t0≤s≤t

∫ s

t0

[
1 + |x(r)|2

] p−2
2 xT (r)g(xr, r)dB(r)

)

≤ 4
√

2pE
(∫ t

t0

[
1 + |x(s)|2

]p−2|xT (s)g(xs, s)|2ds
) 1

2

≤ 4
√

2pE
{(

sup
t0≤s≤t

[
1 + |x(s)|2

] p
2

)∫ t

t0

[
1 + |x(s)|2

] p−4
2 |x(s)|2|g(xs, s)|2ds

} 1
2

≤ 1
2
E

(
sup

t0≤s≤t

[
1 + |x(s)|2

] p
2

)
+ 16p2K E

∫ t

t0

[
1 + ||xs||2

] p
2 ds. (4.6)

Substituting this into (4.5) yields that

E

(
sup

t0≤s≤t

[
1 + |x(s)|2

] p
2

)
≤ 2

p
2 (1 + E||ξ||p) + CE

∫ t

t0

[
1 + ||xs||2

] p
2 ds, (4.7)

where C = 2c1 + 32p2K = p
[
2
√
K + (33p− 1)K

]
as defined before. Note that

E

(
sup

t0−τ≤s≤t

[
1 + |x(s)|2

] p
2

)
≤ E

[
1 + ||ξ||2

] p
2 + E

(
sup

t0≤s≤t

[
1 + |x(s)|2

] p
2

)
≤ 2

p−2
2 (1 + E||ξ||p) + E

(
sup

t0≤s≤t

[
1 + |x(s)|2

] p
2

)
.

It then follows from (4.7) that

E

(
sup

t0−τ≤s≤t

[
1 + |x(s)|2

] p
2

)
≤ 3

2
2

p
2 (1 + E||ξ||p) + C

∫ t

t0

E

(
sup

t0−τ≤r≤s

[
1 + |x(r)|2

] p
2

)
ds.
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An application of the Gronwall inequality implies that

E

(
sup

t0−τ≤s≤t

[
1 + |x(s)|2

] p
2

)
≤ 3

2
2

p
2 (1 + E||ξ||p)eC(t−t0), (4.8)

and the desired assertion (4.3) follows. The proof is complete.
When p = 2, inequality (4.3) reduces to

E
(

sup
t0−τ≤s≤t

|x(s)|2
)
≤ 3(1 + E||ξ||2) exp

[
(4
√
K + 130K)(t− t0)

]
.

On the other hand, Lemma 2.3 shows that

E
(

sup
t0−τ≤s≤t

|x(s)|2
)
≤ (1 + 4E||ξ||2) exp

[
(3K(t− t0 + 4)(t− t0)

]
.

Clearly, Theorem 4.1 gives a much better estimate for large t.
As an application of Theorem 4.1 we give an upper bound for the sample

Lyapunov exponent.

Theorem 4.2 Under the linear growth condition (4.2), we have

lim sup
t→∞

1
t

log |x(t)| ≤ 2
√
K + 65K a.s. (4.9)

In other words, the sample Lyapunov exponent of the solution should not be
greater than 2

√
K + 65K.

Proof. For each n = 1, 2, · · ·, it follows from Theorem 4.1 (taking p = 2) that

E

(
sup

t0+n−1≤t≤t0+n
|x(t)|2

)
≤ βeγn,

where β = 3(1 + E||ξ||2) and γ = 2
[
2
√
K + 65K

]
. Hence, for arbitrary ε > 0,

P

{
ω : sup

t0+n−1≤t≤t0+n
|x(t)|2 > e(γ+ε)n

}
≤ βe−εn.

The Borel–Cantelli lemma now yields that for almost all ω ∈ Ω, there is a
random integer n0 = n0(ω) such that

sup
t0+n−1≤t≤t0+n

|x(t)|2 ≤ e(γ+ε)n whenever n ≥ n0.

Consequently, for almost all ω ∈ Ω, if t0 + n− 1 ≤ t ≤ t0 + n and n ≥ n0,

1
t

log |x(t)| ≤ (γ + ε)n
2(t0 + n− 1)

.
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Thus

lim sup
t→∞

1
t

log |x(t)| ≤ γ + ε

2
= 2

√
K + 65K +

ε

2
a.s.

Since ε is arbitrary, the assertion (4.9) must hold.
As another application of Theorem 4.1 we now show the continuity of the

pth moment of the solution.

Theorem 4.3 Under the same conditions as Theorem 4.1, we have

E|x(t)− x(s)|p ≤ β(t)(t− s)
p
2 for all t0 ≤ s < t <∞, (4.10)

where

β(t) =
3
4

2pK
p
2 (1 + E||ξ||p)eC(t−t0)

(
[2(t− t0)]

p
2 + [p(p− 1)]

p
2

)
and C = p

[
2
√
K + (33p − 1)K

]
. In particular, the pth moment of the solution

is continuous.

Proof. Note that

E|x(t)− x(s)|p ≤ 2p−1E

∣∣∣∣∫ t

s

f(xr, r)dr
∣∣∣∣p + 2p−1E

∣∣∣∣∫ t

s

g(xr, r)dB(r)
∣∣∣∣p.

Using the Hölder inequality, Theorem 1.7.1 and the linear growth condition, we
can then obtain that

E|x(t)− x(s)|p ≤ [2(t− s)]p−1E

∫ t

s

|f(xr, r)|pdr

+
1
2
[2p(p− 1)]

p
2 (t− s)

p−2
2 E

∫ t

s

|g(xr, r)|pdr

≤ c2(t− s)
p−2
2

∫ t

s

E(1 + ||xr||2)
p
2 ,

where c2 = 2
p−2
2 K

p
2

(
[2(t− t0)]

p
2 + [p(p− 1)]

p
2

)
. Applying (4.8) one sees that

E|x(t)− x(s)|p ≤ c2(t− s)
p−2
2

∫ t

s

3
2

2
p
2 (1 + E||ξ||p)eC(r−t0)dr

≤ 3
2
c22

p
2 (1 + E||ξ||p)eC(t−t0)(t− s)

p
2 ,

which is the required inequality (4.10).
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5.5 APPROXIMATE SOLUTIONS

In Chapter 2 we discussed Caratheodory’s and Euler–Maruyama’s approx-
imate solutions to stochastic differential equations and we also pointed out the
advantages of these approximation procedures in comparison with Picard’s. In
this section we shall establish Caratheodory’s and Euler–Maruyama’s approxi-
mate solutions to stochastic functional differential equations. To make the the-
ory more understandable, we shall only discuss the case of stochastic differential
delay equations but the reader will see that the theory can be extended to more
general functional equations.

Let us first discuss the Caratheodory approximation procedure. Consider
the stochastic differential delay equation

dx(t) = F (x(t), x(t− δ(t)), t)dt+G(x(t), x(t− δ(t)), t)dB(t) (5.1)

on t ∈ [t0, T ] with initial data (2.2), where δ : [t0, T ] → [0, τ ], F : Rd × Rd ×
[t0, T ] → Rd and G : Rd × Rd × [t0, T ] → Rd×m are all Borel measurable. We
impose the uniform Lipschitz condition and the linear growth condition. That
is, there exists a K̄ > 0 such that for all t ∈ [t0, T ] and all x, y, x̄, ȳ ∈ Rd

|F (x, y, t)−F (x̄, ȳ, t)|2
∨
|G(x, y, t)−G(x̄, ȳ, t)|2 ≤ K̄(|x− x̄|2 + |y− ȳ|2); (5.2)

and there is moreover a K > 0 such that for all (x, y, t) ∈ Rd ×Rd × [t0, T ],

|F (x, y, t)|2
∨
|G(x, y, t)|2 ≤ K(1 + |x|2 + |y|2). (5.3)

Recall that in Section 2.6 when we discussed the Caratheodory approximation
for the stochastic differential equation

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t),

the main idea was to replace the present state x(t) with the past x(t− 1/n) to
obtain the delay equation

dxn(t) = f(xn(t− 1/n), t)dt+ g(xn(t− 1/n), t)dB(t)

and then showed that the solution xn(t) of this delay equation approximates the
solution x(t) of the original equation. When we try to carry over this procedure
to the delay equation (5.1), we will naturally replace the present state x(t) by
its past x(t− 1/n) as well but with what should we replace the past x(t− δ(t))?
In the first instance, one may be tempted to replace it with x(t − δ(t) − 1/n).
However, on the second thought, one realizes that it is not necessary in the case
of δ(t) ≥ 1/n. It is in this spirit we define the Caratheodory approximation as
follows: For each integer n ≥ 2/τ , define xn(t) on [t0 − τ, T ] by

xn(t0 + θ) = ξ(θ) for − τ ≤ θ ≤ 0
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and

xn(t) = ξ(0) +
∫ t

t0

IDc
n
(s)F (xn(s− 1/n), xn(s− δ(s)), s)ds

+
∫ t

t0

IDn(s)F (xn(s− 1/n), xn(s− δ(s)− 1/n), s)ds

+
∫ t

t0

IDc
n
(s)G(xn(s− 1/n), xn(s− δ(s)), s)dB(s)

+
∫ t

t0

IDn(s)G(xn(s− 1/n), xn(s− δ(s)− 1/n), s)dB(s) (5.4)

for t0 ≤ t ≤ T , where

Dn = {t ∈ [t0, T ] : δ(t) < 1/n} and Dc
n = [t0, T ]−Dn.

It is important to note that each xn(·) can be determined explicitly by the
stepwise iterated Itô integrals over the intervals [t0, t0 +1/n], (t0 +1/n, t0 +2/n]
etc. Let us now prepare a few lemmas in order to show the main result.

Lemma 5.1 Let (5.3) hold. Then, for all n ≥ 2/τ ,

E
(

sup
t0−τ≤t≤T

|xn(s)|2
)
≤
(1

2
+ 6E||ξ||2

)
e10K(T−t0+4)(T−t0). (5.5)

Proof. By Hölder’s inequality, Doob’s martingale inequality and the linear
growth condition (5.3), we can derive from (5.4) that for t0 ≤ t ≤ T ,

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ 5E|ξ(0)|2

+ 5K(T − t0 + 4)
∫ t

t0

IDc
n
(s)
[
1 + E|xn(s− 1/n)|2 + E|xn(s− δ(s))|2

]
ds

+ 5K(T − t0 + 4)
∫ t

t0

IDn(s)
[
1 + E|xn(s− 1/n)|2 + E|xn(s− δ(s)− 1/n)|2

]
ds

≤ 5E||ξ||2 + 5K(T − t0 + 4)
∫ t

t0

[
1 + 2E

(
sup

t0−τ≤r≤s
|xn(r)|2

)]
ds.

Hence

1
2

+ E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤ 1

2
+ E||ξ||2 + E

(
sup

t0≤s≤t
|xn(s)|2

)
≤ 1

2
+ 6E||ξ||2 + 10K(T − t0 + 4)

∫ t

t0

[
1
2

+ E
(

sup
t0−τ≤r≤s

|xn(r)|2
)]
ds.
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The Gronwall inequality implies

1
2

+ E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤
(1

2
+ 6E||ξ||2

)
e10K(T−t0+4)(t−t0)

and the required inequality (5.5) follows immediately.

Lemma 5.2 Let (5.3) hold. Then the solution of equation (5.1) has the property

E
(

sup
t0−τ≤t≤T

|x(t)|2
)
≤ C1 :=

(1
2

+ 4E||ξ||2
)
e6K(T−t0+4)(T−t0). (5.6)

Moreover, for any t0 ≤ s < t ≤ T with t− s < 1,

E|x(t)− x(s)|2 ≤ C2(t− s), (5.7)

where C2 = 4K(1 + 2C1).

Proof. The proof of (5.6) is similar to that of Lemma 5.1 so we need only to
show (5.7) but this is straightforward:

E|x(t)− x(s)|2 ≤ 2K(t− s+ 1)
∫ t

s

[
1 + E|x(r)|2 + E|x(r − δ(r))|2

]
dr

≤ 4K(1 + 2C1)(t− s)

as required.
We can now prove one of the main results in this section.

Theorem 5.3 Let (5.2) and (5.3) hold. Then

E
(

sup
t0≤t≤T

|x(t)− xn(t)|2
)
≤ 4C3e

5C3(T−t0)

×
(

6C1 + TC2

n
+ 2C1µ{t ∈ [t0, t0 + τ ] : 0 < δ(t) < 1/n}

)
, (5.8)

where C1, C2 are defined in Lemma 5.2, C3 = 4K̄(T − t0 + 4) and µ stands for
the Lebesgue measure on R.

Proof. By Hölder’s inequality, Doob’s martingale inequality and the Lipschitz
condition (5.2), we can derive that, for t0 ≤ t ≤ T ,

E
(

sup
t0≤s≤t

|x(s)− xn(s)|2
)

≤ C3

∫ t

t0

IDc
n
(s)
[
E|x(s)− xn(s− 1/n)|2

+ E|x(s− δ(s))− xn(s− δ(s))|2
]
ds
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+ C3

∫ t

t0

IDn
(s)
[
E|x(s)− xn(s− 1/n)|2

+ E|x(s− δ(s))− xn(s− δ(s)− 1/n)|2
]
ds

≤ 2C3

∫ t

t0

[
E|x(s)− x(s− 1/n)|2 + E|x(s− 1/n)− xn(s− 1/n)|2

]
ds

+ C3

∫ t

t0

IDc
n
(s)E|x(s− δ(s))− xn(s− δ(s))|2

]
ds

+ 2C3

∫ t

t0

IDn(s)
[
E|x(s− δ(s))− x(s− δ(s)− 1/n)|2

+ E|x(s− δ(s)− 1/n)− xn(s− δ(s)− 1/n)|2
]
ds

≤ 5C3

∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− xn(r)|2
)
ds+ J1 + I2,

where

J1 = 2C3

∫ T

t0

E|x(s)− x(s− 1/n)|2ds

and

J2 = 2C3

∫ T

t0

IDn
(s)E|x(s− δ(s))− x(s− δ(s)− 1/n)|2ds.

Applying the Gronwall inequality we obtain that

E
(

sup
t0≤s≤T

|x(s)− xn(s)|2
)
≤ (J1 + J2)e5C3(T−t0). (5.9)

But, using Lemma 5.2, we can estimate

J1 ≤ 4C3

∫ t0+1/n

t0

(E|x(s)|2 + E|x(s− 1/n)|2)ds

+ 2C3

∫ T

t0+1/n

E|x(s)− x(s− 1/n)|2ds

≤ 8C1C3/n+ 2C2C3T/n = 2C3(4C1 + TC2)/n. (5.10)

Also, setting D0 = {t ∈ [t0, T ] : δ(t) = 0},

J2 = 2C3

∫ T

t0

ID0(s)E|x(s)− x(s− 1/n)|2ds

+ 2C3

∫ T

t0

IDn−D0(s)E|x(s− δ(s))− x(s− δ(s)− 1/n)|2ds

≤ 8C1C3

∫ t0+1/n

t0

ID0(s)ds+ 2C2C3/n

∫ T

t0+1/n

ID0(s)ds

+ 8C1C3

∫ t0+τ+1/n

t0

IDn−D0(s)ds+ 2C2C3/n

∫ T

t0+τ+1/n

IDn−D0(s)ds

≤ 2C3(8C1 + TC2)/n+ 8C1C3µ
(
[t0, t0 + τ ] ∩ (Dn −D0)

)
. (5.11)
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Substituting (5.10) and (5.11) into (5.9) yields the required result (5.8). The
proof is complete.

Let us now turn to the Euler–Maruyama approximation procedure. We
first give the definition of the Euler–Maruyama approximation sequence. For
each integer n ≥ 1, define xn(t) on [t0 − τ, T ] as follows:

xn(t0 + θ) = ξ(θ) for − τ ≤ θ ≤ 0

and

xn(t) = x(t0 + k/n)

+
∫ t

t0+k/n

F (xn(t0 + k/n), xn(t0 + k/n− δ(s)), s)ds

+
∫ t

t0+k/n

G(xn(t0 + k/n), xn(t0 + k/n− δ(s)), s)dB(s) (5.12)

for t0 + k/n < t ≤ [t0 + (k + 1)/n] ∧ T, k = 0, 1, 2, · · ·. In the sequel of this
section xn(t) always means the Euler–Maruyama approximation rather than the
Caratheodory one. Clearly, xn(·) can be determined explicitly by the stepwise
iterated Itô integrals over the intervals (t0, t0 + 1/n], (t0 + 1/n, t0 + 2/n] etc.
Moreover, if we define x̂n(t0) = xn(t0), x̃n(t0) = xn(t0 − δ(t0),

x̂n(t) = xn(t0 + k/n) and x̃n(t) = xn(t0 + k/n− δ(t)) (5.13)

for t0 +k/n < t ≤ [t0 +(k+1)/n]∧T, k = 0, 1, 2, · · ·, it then follows from (5.12)
that

xn(t) = ξ(0) +
∫ t

t0

F (x̂n(s), x̃n(s), s)ds+
∫ t

t0

G(x̂n(s), x̃n(s), s)dB(s) (5.14)

for t0 ≤ t ≤ T . The following lemma shows that the Euler–Maruyama approxi-
mation sequence is bounded in L2.

Lemma 5.4 Let (5.3) hold. Then, for all n ≥ 1,

E
(

sup
t0−τ≤t≤T

|xn(t)|2
)
≤
(1

2
+ 4E||ξ||2

)
e6K(T−t0+4)(T−t0). (5.15)

Proof. It is easy to show from (5.14) that, for t0 ≤ t ≤ T ,

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ 3E|ξ(0)|2

+3K(T − t0 + 4)
∫ t

t0

[
1 + E|x̂n(s)|2 + E|x̃n(s)|2

]
ds.
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Recalling the definition of x̂n(t) and x̃n(t), we then see that

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤ 3E||ξ||2

+3K(T − t0 + 4)
∫ t

t0

[
1 + 2E

(
sup

t0−τ≤r≤s
|xn(r)|2

)]
ds.

Consequently
1
2

+ E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤ 1

2
+ 4E||ξ||2

+6K(T − t0 + 4)
∫ t

t0

[
1
2

+ E
(

sup
t0−τ≤r≤s

|xn(r)|2
)]
ds

and the required assertion (5.15) follows by applying the Gronwall inequality.
The following theorem shows that the Euler–Maruyama sequence converges

to the unique solution of equation (5.1) and gives an estimate for the difference
between the approximate solution xn(t) and the accurate solution x(t).

Theorem 5.5 Let (5.2) and (5.3) hold. Assume that the initial data ξ =
{ξ(θ) : −τ ≤ θ ≤ 0} is uniformly Lipschitz L2-continuous, that is there is a
positive constant β such that

E|ξ(θ1)− ξ(θ2)|2 ≤ β(θ2 − θ1) if − τ ≤ θ1 < θ2 ≤ 0. (5.16)

Then the difference between the Euler–Maruyama approximate solution xn(t)
and the accurate solution x(t) of equation (5.1) can be estimated as

E
(

sup
t0≤t≤T

|x(t)− xn(t)|2
)
≤ 4C4

n

[
C2(T − t0) + τ(β ∨ C2)

]
e4C4(T−t0), (5.17)

where C2 is defined in Lemma 5.2 and C4 = 2K̄(T − t0 + 4).
Proof. It is not difficult to show that, for t0 ≤ t ≤ T ,

E
(

sup
t0≤s≤t

|x(s)− xn(s)|2
)

≤ C4

∫ t

t0

[
E|x(s)− x̂n(s)|2 + E|x(s− δ(s))− x̃n(s)|2

]
ds. (5.18)

define x̂(t0) = x(t0), x̃(t0) = x(t0 − δ(t0)),

x̂(t) = x(t0 + k/n) and x̃(t) = x(t0 + k/n− δ(t)) (5.19)

for t0 +k/n < t ≤ [t0 +(k+1)/n]∧T, k = 0, 1, 2, · · ·. It then follows from (5.18)
that

E
(

sup
t0≤s≤t

|x(s)− xn(s)|2
)

≤ 2C4

∫ t

t0

[
E|x̂(s)− x̂n(s)|2 + E|x̃(s)− x̃n(s)|2

]
ds+ J3 + J4

≤ 4C4

∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− xn(r)|2
)
ds+ J3 + J4,
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where

J3 = 2C4

∫ T

t0

E|x(s)− x̂(s)|2ds

and

J4 = 2C4

∫ T

t0

E|x(s− δ(s))− x̃(s)|2ds.

By Gronwall’s inequality, we obtain that

E
(

sup
t0≤s≤T

|x(s)− xn(s)|2
)
≤ (J3 + J4)e4C4(T−t0). (5.20)

We now estimate J3 and J4. By Lemma 5.2,

J3 = 2C4

∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

E|x(s)− x(t0 + k/n)|2ds

≤ 2
n
C2C4(T − t0). (5.21)

Also

J4 = 2C4

∑
k≥0

∫ [t0+(k+1)/n]∧T

t0+k/n

E|x(s− δ(s))− x(t0 + k/n− δ(s))|2ds

≤ 2
n
C2C4(T − t0) + 2C4

∑
k

∫ [t0+(k+1)/n]∧τ

t0+k/n

E|x(s− δ(s))− x(t0 + k/n− δ(s))|2ds. (5.22)

It is easy to show, by condition (5.16) and Lemma 5.2, that

E|x(t)− x(s)|2 ≤ 2(β ∨ C2)(t− s) if − τ ≤ s < t ≤ τ, t− s ≤ 1.

We therefore see from (5.22) that

J4 ≤
2C4

n

[
C2(T − t0) + 2τ(β ∨ C2)

]
. (5.23)

Substituting (5.21) and (5.23) into (5.20) yields the required assertion (5.17).
The proof is complete.

In the case when the time delay function δ(·) is Lipschitz continuous, the
Euler–Maruyama approximate solutions can be defined by a simpler form, that
is (5.12) can be replaced by

xn(t) = x(t0 + k/n)

+
∫ t

t0+k/n

F (xn(t0 + k/n), xn(t0 + k/n− δ(t0 + k/n)), s)ds

+
∫ t

t0+k/n

G(xn(t0 + k/n), xn(t0 + k/n− δ(t0 + k/n)), s)dB(s) (5.24)
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for t0 +k/n < t ≤ [t0 +(k+1)/n]∧T, k = 0, 1, 2, · · ·, while xn(t0 + θ) = ξ(θ) for
−τ ≤ θ ≤ 0, the same as before. When both functions F and G are independent
of t, this becomes even simpler, namely

xn(t) = x(t0 + k/n)
+ F (xn(t0 + k/n), xn(t0 + k/n− δ(t0 + k/n)))(t− t0 − k/n)ds
+G(xn(t0 + k/n), xn(t0 + k/n− δ(t0 + k/n)))[B(t)−B(t0 + k/n)].

To be more precise, let us state this result to close this section.

Theorem 5.6 In addition to the assumptions of Theorem 5.5, assume that δ(·)
is Lipschitz continuous, that is there is a positive constant α such that

|δ(t)− δ(s)| ≤ α(t− s) if t0 ≤ s < t ≤ T. (5.25)

Then, for every n > 1+α, the difference between the Euler–Maruyama approxi-
mate solution xn(t) defined by (5.24) and the accurate solution x(t) of equation
(5.1) can be estimated as

E
(

sup
t0≤t≤T

|x(t)− xn(t)|2
)

≤ 4C4

n

(
C2(1 + α)(T − t0) + τ [β ∨ C2(1 + α)]

)
e4C4(T−t0). (5.26)

where C2 and C4 are defined as before.

This theorem can be proved in the same way as in the proof of Theorem
5.5 with a little bit careful consideration on the estimation of J4, but the details
are left to the reader.

5.6 STABILITY THEORY—RAZUMIKHIN THEOREMS

Stochastic modelling has come to play an important role in many branches
of science and industry. An area of particular interest has been the automatic
control of stochastic systems, with consequent emphasis being placed on the anal-
ysis of stability in stochastic models. One of the most useful stochastic models
which appear frequently in applications is the stochastic functional differential
equation (2.10), namely

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t ≥ t0. (6.1)

In this section we shall discuss its stability property. Due to the page limit
we shall only investigate the exponential stability—one of the most important
stabilities. For this purpose we always assume that all of the assumptions of
the existence-and-uniqueness Theorem 2.6 are fulfilled so equation (6.1) has a
unique global solution for any given initial data xt0 = ξ satisfying (2.2), and
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we here denote the solution by x(t; ξ). Assume furthermore that f(0, t) ≡ 0
and g(0, t) ≡ 0 so equation (6.1) has the solution x(t) ≡ 0 corresponding to the
initial data xt0 = 0. This solution is called the trivial solution or equilibrium
position.

When we try to carry over the stability theory established in Chapter 4
to the stochastic functional differential equation, we will naturally employ the
Lyapunov functionals rather than functions. For instance, it is not difficult to
show the following result (cf. Kolmanovskii & Nosov (1986)):

Let p ≥ 2 and c1–c3 be positive constants. Assume that there is a continuous
functional V : C([−τ, 0];Rd)× [t0,∞) → R such that

c1|ϕ(0)|p ≤ V (ϕ, t) ≤ c2||ϕ||p, (ϕ, t) ∈ C([−τ, 0];Rd)× [t0,∞) (6.2)

and

EV (xt2 , t2)− EV (xt1 , t1) ≤ −c3
∫ t2

t1

E|x(s)|pds, t0 ≤ t1 < t2 <∞. (6.3)

Then the trivial solution of equation (6.1) is pth moment asymptotically stable.

This result is of course a natural generalization of the Lyapunov direct method
but is somewhat inconvenient in applications. This is not only because condi-
tion (6.3) is not related to the coefficients f and g explicitly but also because
it appears to be more difficult to construct the Lyapunov functionals than the
Lyapunov functions. It is in this spirit that we would like to explore the pos-
sibility of using the rate of change of a function on Rd to determine sufficient
conditions for stability.

To explain the idea, we need to introduce a few more new notations. Denote
by Cb

Ft0
([−τ, 0];Rd) the family of all bounded, Ft0-measurable, C([−τ, 0];Rd)-

valued random variables. For p > 0 and t ≥ 0, denote by Lp
Ft

([−τ, 0];Rd) the
family of all Ft-measurable C([−τ, 0];Rd)-valued random variables φ = {φ(θ) :
−τ ≤ θ ≤ 0} such that E||φ||p < ∞. Moreover, for each function V (x, t) ∈
C2,1(Rd × [t0 − τ,∞);R+), define an operator LV from C([−τ, 0];Rd)× [t0,∞)
to R by

LV (ϕ, t) = Vt(ϕ(0), t) + Vx(ϕ(0), t)f(ϕ, t)

+
1
2
trace

[
gT (ϕ, t)Vxx(ϕ(0), t)g(ϕ, t)

]
.

Then the expectation of the derivative of V along the solution x(t; ξ) = x(t) of
equation (6.1) is given by ELV (xt, t). In order for ELV (xt, t) to be negative
for all initial data ξ and t ≥ t0, one would be forced to impose very severe
restrictions on the functions f(ϕ, t) and g(ϕ, t) to the extent that the point ϕ(0)
plays a dominant role and, therefore, the results will apply only to equations
that are very similar to stochastic differential equations. This seems to indicate



Sec.5.6] Stability Theory—Razumikhin Theorems 173

that it is not good enough to use the Lyapunov functions. Fortunately, a few
moments of reflection in the proper direction indicate that it is unnecessary to
require ELV (xt, t) be negative for all initial data and all t ≥ t0 in order to
have asymptotic stability, and this is the basic idea exploited in this section.
This idea originated with Razumikhin (1956, 1960) for the ordinary differential
delay equation and was developed by several people to more general functional
differential equations (cf. Hale & Lunel (1993) and the references therein) and
by Mao (1996b) to stochastic functional differential equations. The results in
this direction are generally referred to as theorems of Razumikhin type.

Let us now begin to establish the Razumikhin-type theorems on the expo-
nential stability for the stochastic functional differential equation.

Theorem 6.1 Let λ, p, c1, c2 all be positive constants and q > 1. Assume that
there exists a function V ∈ C2,1(Rd × [t0 − τ,∞);R+) such that

c1|x|p ≤ V (x, t) ≤ c2|x|p for all (x, t) ∈ Rd × [t0 − τ,∞) (6.4)

and, moreover,
ELV (φ, t) ≤ −λEV (φ(0), t) (6.5)

for all t ≥ t0 and those φ ∈ Lp
Ft

([−τ, 0];Rd) satisfying

EV (φ(θ), t+ θ) < qEV (φ(0), t) on − τ ≤ θ ≤ 0.

Then for all ξ ∈ Cb
Ft0

([−τ, 0];Rd)

E|x(t; ξ)|p ≤ c2
c1
E||ξ||pe−γ(t−t0) on t ≥ t0, (6.6)

where γ = min{λ, log(q)/τ}.

Proof. Fix any initial data ξ ∈ Cb
Ft0

([−τ, 0];Rd) and write x(t; ξ) = x(t) simply.
Let ε ∈ (0, γ) be arbitrary and set γ̄ = γ − ε. Define

U(t) = max
−τ≤θ≤0

[
eγ̄(t+θ)EV (x(t+ θ), t+ θ)

]
for t ≥ t0. (6.7)

Noting that E(sup0≤s≤t |x(s)|r) < ∞ for all r > 0 and, moreover, x(t), V (x, t)
are continuous, we see that EV (x(t), t) is continuous. Hence U(t) is well define
and is continuous. We claim that

D+U(t) := lim sup
h→0+

U(t+ h)− U(t)
t

≤ 0 for all t ≥ 0. (6.8)

To show this, for each t ≥ t0 (fixed for the moment), define

θ̄ = max{θ ∈ [−τ, 0] : eγ̄(t+θ)EV (x(t+ θ), t+ θ) = U(t)}.
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Obviously, θ̄ is well defined, θ̄ ∈ [−τ, 0] and

U(t) = eγ̄(t+θ̄)EV (x(t+ θ̄), t+ θ̄).

If θ̄ < 0, then

eγ̄(t+θ)EV (x(t+ θ), t+ θ) < eγ̄(t+θ̄)EV (x(t+ θ̄), t+ θ̄) for all θ̄ < θ ≤ 0.

It is therefore easy to observe that for all h > 0 sufficiently small

eγ̄(t+h)EV (x(t+ h), t+ h) ≤ eγ̄(t+θ̄)EV (x(t+ θ̄), t+ θ̄),

hence
U(t+ h) ≤ U(t) and D+U(t) ≤ 0.

If θ̄ = 0, then

eγ̄(t+θ)EV (x(t+ θ), t+ θ) ≤ eγ̄tEV (x(t), t) for all − τ ≤ θ ≤ 0.

So

EV (x(t+ θ), t+ θ) ≤ e−γ̄θEV (x(t), t)
≤ eγ̄τEV (x(t), t) for all − τ ≤ θ ≤ 0. (6.9)

Note that either EV (x(t), t) = 0 or EV (x(t), t) > 0. If EV (x(t), t) = 0, then
(6.9) and (6.4) yield that x(t + θ) = 0 a.s. for all −τ ≤ θ ≤ 0. Recalling the
fact that f(0, t) ≡ 0 and g(0, t) ≡ 0, one sees that x(t+ h) = 0 a.s. for all h > 0
hence U(t + h) = 0 and D+U(t) = 0. On the other hand, in the case when
EV (x(t), t) > 0, (6.9) implies

EV (x(t+ θ), t+ θ) < qEV (x(t), t) for all − τ ≤ θ ≤ 0

since eγ̄τ < q. Thus, by condition (6.5),

ELV (xt, t) ≤ −λEV (x(t), t).

However, by Itô’s formula, one can derive that for all h > 0

eγ̄(t+h)EV (x(t+ h), t+ h)− eγ̄tEV (x(t), t)

=
∫ t+h

t

eγ̄s
[
γ̄EV (x(s), s) + ELV (xs, s)

]
ds.

Note that

γ̄EV (x(t), t) + ELV (xt, t) ≤ −(λ− γ̄)EV (x(t), t) < 0.
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One sees from the continuity of V etc. that for all h > 0 sufficiently small

γ̄EV (x(s), s) + ELV (xs, s) ≤ 0 if t ≤ s ≤ t+ h,

and, consequently,

eγ̄(t+h)EV (x(t+ h), t+ h) ≤ eγ̄tEV (x(t), t).

Therefore, U(t+h) = U(t) for all h > 0 sufficiently small and then D+U(t) = 0.
Inequality (6.8) has been proved. It now follows from (6.8) immediately that

U(t) ≤ U(0) for all t ≥ t0.

By the definition of U(t) and condition (6.4) one sees

E|x(t)|p ≤ c2
c1
E||ξ||pe−γ̄(t−t0) =

c2
c1
E||ξ||pe−(γ−ε)(t−t0).

Since ε is arbitrary, the required assertion (6.6) must hold. The proof is complete.
As pointed out in Chapter 4, the pth moment exponential stability and

almost sure exponential stability do not imply each other in general. However,
we are going to show that under an irrestrictive condition the pth moment ex-
ponential stability implies almost sure exponential stability

Theorem 6.2 Let p ≥ 1. Assume that there is a constant K > 0 such that for
every solution x(t) of equation (6.1)

E
(
|f(xt, t)|p + |g(xt, t)|p

)
≤ K sup

−τ≤θ≤0
E|x(t+ θ)|p on t ≥ 0. (6.10)

Then (6.6) implies

lim sup
t→∞

1
t

log |x(t; ξ)| ≤ −γ
p

a.s. (6.11)

In particular, if, in addition to the above conditions, all of the assumptions of
Theorem 6.1 are satisfied, then the trivial solution of equation (6.1) is almost
surely exponentially stable.

Proof. Fix any ξ ∈ Cb
Ft0

([−τ, 0];Rd) and write x(t; ξ) = x(t) again. For each
integer k ≥ 2,

E||xt0+kτ ||p = E
(

sup
0≤h≤τ

|x(t0 + (k − 1)τ + h)|p
)

≤ 3p−1

[
E|x(t0 + (k − 1)τ)|p + E

(∫ t0+kτ

t0+(k−1)τ

|f(xt, t)|dt
)p

+ E
(

sup
0≤h≤τ

∣∣∫ t0+(k−1)τ+h

t0+(k−1)τ

g(xt, t)dB(t)
∣∣p)]. (6.12)
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But, by Hölder’s inequality, condition (6.10) and Theorem 6.1, one can derive
that

E
(∫ t0+kτ

t0+(k−1)τ

|f(xt, t)|dt
)p

≤ τp−1

∫ t0+kτ

t0+(k−1)τ

E|f(xt, t)|pdt

≤ Kτp−1

∫ t0+kτ

t0+(k−1)τ

(
sup

−τ≤θ≤0
E|x(t+ θ)|p

)
dt

≤ Kc2τ
p−1

c1
E||ξ||p

∫ t0+kτ

t0+(k−1)τ

e−γ(t−τ−t0)dt

≤ Kc2τ
p

c1
E||ξ||p e−(k−2)τγ . (6.13)

On the other hand, by the Burkholder–Davis–Gundy inequality,

J := E
(

sup
0≤h≤τ

∣∣∫ t0+(k−1)τ+h

t0+(k−1)τ

g(xt, t)dB(t)
∣∣p)

≤ CpE
(∫ t0+kτ

t0+(k−1)τ

|g(xt, t)|2dt
) p

2
, (6.14)

where Cp is a positive constant dependent of p only. Note from condition (6.10)
that

|g(ϕ, t)|p ≤ K||ϕ||p for (ϕ, t) ∈ C([−τ, 0];Rd)× [t0,∞).

Let σ ∈ (0, 1/3p−1K) be sufficiently small for

3p−1Kσ

1− 3p−1Kσ
< e−γτ . (6.15)

One can then derives from (6.14) that

J ≤ CpE

[(
sup

t0+(k−1)τ≤t≤t0+kτ

|g(xt, t)|
)∫ t0+kτ

t0+(k−1)τ

|g(xt, t)|dt
] p

2

≤ σE
(

sup
t0+(k−1)τ≤t≤t0+kτ

|g(xt, t)|p
)

+
C2

p

4σ
E

[∫ t0+kτ

t0+(k−1)τ

|g(xt, t)|dt
]p

≤ KσE
(

sup
t0+(k−1)τ≤t≤t0+kτ

||xt||p
)

+
C2

pτ
p−1

4σ

∫ t0+kτ

t0+(k−1)τ

E|g(xt, t)|pdt

≤ Kσ
(
E||xt0+kτ ||p + E||xt0+(k−1)τ ||p

)
+
Kc2C

2
pτ

p

4σc1
E||ξ||p e−(k−2)τγ . (6.16)

Substituting (6.6), (6.13) and (6.16) into (6.12) and then making use of (6.15)
we obtain that

E||xt0+kτ ||p ≤ e−τγE||xt0+(k−1)τ ||p + Ce−(k−2)τγ , (6.17)
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where C is a constant independent of k. By induction, one can easily show from
(6.17) that

E||xt0+kτ ||p ≤ e−kτγE||xt0 ||p + kCe−(k−2)τγ

≤
(
Ce2τγ + E||ξ||p

)
(k + 1)e−kτγ . (6.18)

We shall now show that (6.18) implies the required assertion (6.11). Let ε ∈
(0, γ) be arbitrary. By (6.18),

P
{
ω : ||xt0+kτ || > e−(γ−ε)kτ/p

}
≤ e(γ−ε)kτE||xt0+kτ ||p ≤

(
Ce2τγ + E||ξ||p

)
(k + 1)e−εkτ .

In view of the well-known Borel–Cantelli lemma, one sees that for almost all
ω ∈ Ω

||xt0+kτ || ≤ e−(γ−ε)kτ/p (6.19)

holds for all but finitely many k. Hence there exists a k0(ω), for all ω ∈ Ω
excluding a P -null set, for which (6.19) holds whenever k ≥ k0. Consequently,
for almost all ω ∈ Ω,

1
t

log |x(t)| ≤ − kτ(γ − ε)
p[t0 + (k − 1)τ ]

.

if t0 + (k − 1)τ ≤ t ≤ t0 + kτ, k ≥ k0. Therefore

lim sup
t→∞

1
t

log |x(t)| ≤ −γ − ε

p
a.s.

and the required (6.11) follows by letting ε→ 0. The proof is complete.
In the case of p ∈ (0, 1), we need a slightly stronger condition than (6.10)

in order to imply the almost sure exponential stability from the pth moment
exponential stability.

Theorem 6.3 Let p ∈ (0, 1). Assume that there is a constant K > 0 such that
for every solution x(t) of equation (6.1)

E

(
sup

−τ≤θ≤0

[
|f(xt+θ, t+ θ)|p + |g(xt+θ, t+ θ)|p

])
≤ K sup

−2τ≤r≤0
E|x(t+ r)|p on t ≥ τ. (6.20)

Then (6.6) implies

lim sup
t→∞

1
t

log |x(t; ξ)| ≤ −γ
p

a.s. (6.21)
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Proof. Fix any ξ ∈ Cb
Ft0

([−τ, 0];Rd) and write x(t; ξ) = x(t). Noting that, for
any a, b, c ≥ 0,

(a+ b+ c)p ≤ [3(a ∨ b ∨ c)]p ≤ 3p(ap ∨ bp ∨ cp) ≤ 3p(ap + bp + cp),

we have, for each integer k ≥ 2,

E||xt0+kτ ||p = E
(

sup
0≤h≤τ

|x(t0 + (k − 1)τ + h)|p
)

≤ 3p

[
E|x(t0 + (k − 1)τ)|p + E

(∫ t0+kτ

t0+(k−1)τ

|f(xt, t)|dt
)p

+ E
(

sup
0≤h≤τ

∣∣∫ t0+(k−1)τ+h

t0+(k−1)τ

g(xt, t)dB(t)
∣∣p)]. (6.22)

By conditions (6.20) and (6.6),

E
(∫ t0+kτ

t0+(k−1)τ

|f(xt, t)|dt
)p

≤ τpE
(

sup
t0+(k−1)τ≤t≤t0+kτ

|f(xt, t)|p
)

≤ Kτp
(

sup
t0+(k−2)τ≤t≤t0+kτ

E|x(t)|p
)
≤ Kc2τ

p

c1
E||ξ||pe−(k−2)τγ . (6.23)

Also, by the Burkholder–Davis–Gundy inequality etc.,

E
(

sup
0≤h≤τ

∣∣∫ t0+(k−1)τ+h

t0+(k−1)τ

g(xt, t)dB(t)
∣∣p)

≤ CpE
(∫ t0+kτ

t0+(k−1)τ

|g(xt, t)|2dt
) p

2

≤ Cpτ
p
2E

[
sup

t0+(k−1)τ≤t≤t0+kτ

|g(xt, t)|p
]

≤ KCpτ
p
2

[
sup

t0+(k−2)τ≤t≤t0+kτ

E|x(t)|p
]

≤ Kc2Cpτ
p
2

c1
E||ξ||pe−(k−2)τγ , (6.24)

where Cp is a positive constant dependent of p only. Substituting (6.6), (6.23)
and (6.24) into (6.22) yields

E||xt0+kτ ||p ≤ Ce−(k−2)τγ , (6.25)

where C is a constant independent of k. It is now the same as the proof of
Theorem 6.2 to derive the required assertion (6.21) from (6.25). The proof is
complete.
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Let us now apply the above Razumikhin-type theorems to some special
cases of equation (6.1).

(i) Stochastic Differential Delay Equations

First of all, consider a stochastic differential delay equation

dx(t) = F (x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)dt
+G(x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)dB(t) (6.26)

on t ≥ t0 with initial data x0 = ξ satisfying (2.2), where δi : [t0,∞) → [0, τ ], 1 ≤
i ≤ k, are all continuous, and

F : Rd ×Rn×k × [t0,∞) → Rd, G : Rd ×Rn×k × [t0,∞) → Rn×m.

We assume that both F and G satisfy the local Lipschitz condition and the linear
growth condition (cf. Theorem 3.2). We also assume that F (0, · · · , 0, t) ≡ 0 and
G(0, · · · , 0, t) ≡ 0.

Theorem 6.4 Let λ, λ1, · · · , λk, p, c1, c2 all be positive numbers. Assume that
there exists a function V (x, t) ∈ C2,1(Rd × [t0 − τ,∞);R+) such that

c1|x|p ≤ V (x, t) ≤ c2|x|p for all (x, t) ∈ Rd × [t0 − τ,∞), (6.27)

and

Vt(x, t) + Vx(x, t)F (x, y1, · · · , yk, t)

+
1
2
trace

[
GT (x, y1, · · · , yk, t)Vxx(x, t)G(x, y1, · · · , yk, t)

]
≤ −λV (x, t) +

k∑
i=1

λiV (yi, t− δi(t)) (6.28)

for all (x, y1, · · · , yk, t) ∈ Rd × Rn×k × [t0,∞). If λ >
∑k

i=1 λi, then the triv-
ial solution of equation (6.26) is pth moment exponentially stable and its pth
moment Lyapunov exponent should not be greater than −(λ− q

∑k
i=1 λi), where

q ∈ (1, λ/
∑k

i=1 λi) is the unique root of λ − q
∑k

i=1 λi = log(q)/τ . If, in
addition, p ≥ 1 and there is a K > 0 such that

|F (x, y1, · · · , yk, t)|
∨
|G(x, y1, · · · , yk, t)| ≤ K

(
|x|+

k∑
i=1

|yi|
)

(6.29)

for all (x, y1, · · · , yk, t) ∈ Rd ×Rn×k × [t0,∞), then the trivial solution of equa-
tion (6.26) is also almost surely exponentially stable and its sample Lyapunov
exponent should not be greater than −(λ− q

∑k
i=1 λi)/p.
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Proof. Define, for (ϕ, t) ∈ C([−τ, 0];Rd)× [t0,∞),

f(ϕ, t) = F (ϕ(0), ϕ(−δ1(t)), · · · , ϕ(−δk(t)), t)

and
g(ϕ, t) = G(ϕ(0), ϕ(−δ1(t)), · · · , ϕ(−δk(t)), t).

Then equation (6.26) becomes equation (6.1). Moreover, the operator LV be-
comes

LV (ϕ, t) = Vt(ϕ(0), t) + Vx(ϕ(0), t)F (ϕ(0), ϕ(−δ1(t)), · · · , ϕ(−δk(t)), t)

+
1
2
trace

[
GT (ϕ(0), ϕ(−δ1(t)), · · · , ϕ(−δk(t)), t)

× Vxx(ϕ(0), t)G(t, ϕ(0), ϕ(−δ1(t)), · · · , ϕ(−δk(t)), t)
]
.

If t ≥ t0 and φ ∈ Lp
Ft

([−τ, 0];Rd) satisfying

EV (φ(θ), t+ θ) < qEV (φ(0), t) for all − τ ≤ θ ≤ 0,

then by condition (6.28)

ELV (φ, t) ≤ −λEV (φ(0), t) +
k∑

i=1

λiEV (φ(−δi(t)), t− δi(t))

≤ −
(
λ− q

k∑
i=1

λi

)
EV (φ(0), t).

So, by Theorem 6.1, the trivial solution of equation (6.26) is pth moment expo-
nentially stable and, moreover, its pth moment Lyapunov exponent should not
be greater than −(λ − q

∑k
i=1 λi). If furthermore p ≥ 1 and (6.29) holds, then

for all t ≥ t0 and φ ∈ Lp
Ft

([−τ, 0];Rd),

E
(
|f(φ, t)|p + |g(φ, t)|p

)
≤ 2E

(
K
[
|φ(0)|+

k∑
i=1

|φ(−δi(t))|
])p

≤ 2Kp(1 + k)p−1E
[
|φ(0)|p +

k∑
i=1

|φ(−δi(t))|p
]

≤ 2Kp(1 + k)p sup
−τ≤θ≤0

E|φ(θ)|p.

Therefore, by Theorem 6.2, the trivial solution of equation (6.26) is almost surely
exponentially stable and its sample Lyapunov exponent should not be greater
than −(λ− q

∑k
i=1 λi)/p. The proof is therefore complete.
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Corollary 6.5 Assume that there is a λ > 0 such that

xTF (x, 0, · · · , 0, t) ≤ −λ|x|2 for all (x, t) ∈ Rd × [t0,∞). (6.30)

Assume also that there are nonnegative numbers αi, βi, 0 ≤ i ≤ k such that

|F (x, 0, · · · , 0, t)− F (x̄, y1, · · · , yk, t)| ≤ α0|x− x̄|+
k∑

i=1

αi|yi| (6.31)

and

|G(x, y1, · · · , yk, t)|2 ≤ β0|x|2 +
k∑

i=1

βi|yi|2 (6.32)

for all t ≥ t0 and x, x̄, y1, · · · , yk ∈ Rd. If p ≥ 2 and

λ >

k∑
i=1

αi +
p− 1

2

k∑
i=0

βi, (6.33)

then the trivial solution of equation (6.26) is pth moment exponentially stable
and is also almost surely exponentially stable.

Proof. Note first that (6.29) follows from (6.31), (6.32) and F (0, · · · , 0, t) ≡ 0.
Let V (x, t) = |x|p and verify (6.28) as follows: For all (x, y1, · · · , yk, t) ∈ Rd ×
Rn×k × [t0,∞),

Vt(x, t) + Vx(x, t)F (x, y1, · · · , yk, t)

+
1
2
trace

[
GT (x, y1, · · · , yk, t)Vxx(x, t)G(x, y1, · · · , yk, t)

]
= p|x|p−2xTF (x, 0, · · · , 0, t)
+ p|x|p−2xT

[
F (x, y1, · · · , yk, t)− F (x, 0, · · · , 0, t)

]
+
p

2
|x|p−2 |G(x, y1, · · · , yk, t)|2

+
p(p− 2)

2
|x|p−4 |xTG(x, y1, · · · , yk, t)|2

≤−
(
pλ− p(p− 1)β0

2

)
|x|p + p

k∑
i=1

αi|x|p−1|yi|

+
p(p− 1)

2

k∑
i=1

βi|x|p−2|yi|2. (6.34)

Using the elementary inequality

uαv1−α ≤ αu+ (1− α)v for u, v ≥ 0, 0 ≤ α < 1, (6.35)
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we have

|x|p−1|yi| =
(
|x|p

) p−1
p
(
|yi|p

) 1
p ≤ p− 1

p
|x|p +

1
p
|yi|p

and

|x|p−2|yi|2 ≤
p− 2
p

|x|p +
2
p
|yi|p.

Substituting these into (6.34) yields that

the left-hand side of (6.34)

≤ −
(
pλ− p(p− 1)

2
β0 − (p− 1)

k∑
i=1

αi −
(p− 1)(p− 2)

2

k∑
i=1

βi

)
|x|p

+
k∑

i=1

(
αi + (p− 1)βi

)
|yi|p.

Now the conclusions follow from Theorem 6.4 immediately and the proof is
complete.

The conditions of Corollary 6.5 are delay-independent and so the conclu-
sions. However, (6.30) may not hold sometimes and, instead, one may have
xTF (x, x, · · · , x, t) ≤ −λ|x|2. For example, F (x, y1, · · · , yk, t) = ax −

∑k
i=1 biyi

with 0 ≤ a <
∑k

i=1 bi. In this case, the delay effect plays the main role in
stabilizing the system. The following Corollary deals with this case.

Corollary 6.6 Assume that there is a λ > 0 such that

xTF (x, x, · · · , x, t) ≤ −λ|x|2 for all (x, t) ∈ Rd × [t0,∞). (6.36)

Let p ≥ 2 and assume furthermore that there are nonnegative numbers αi, βi, 0 ≤
i ≤ k such that

|F (x, x, · · · , x, t)− F (x̄, y1, · · · , yk, t)|p

≤ α0|x− x̄|p +
k∑

i=1

αi|x− yi|p (6.37)

and

|G(x, y1, · · · , yk, t)|p ≤ β0|x|p +
k∑

i=1

βi|yi|p (6.38)

for all t ≥ t0 and x, x̄, y1, · · · , yk ∈ Rd. If

λ > (Kα̂)
1
p +

1
2
(p− 1)β̂

2
p , (6.39)
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where

K = 2p−1
[
τp(α0 + α̂) + C̄pτ

p
2 β̂
]
, C̄p =

[
p(p− 1)

2

] p
2

,

α̂ =
k∑

i=1

αi, β̂ =
k∑

i=0

βi,

then the trivial solution of equation (6.26) is pth moment exponentially stable
and is also almost surely exponentially stable.

Proof. Regard equation (6.26) as a delay equation on t ≥ t0 + τ with initial data
on [t0 − τ, t0 + τ ], that is, consider the delay interval of length 2τ instead of τ .
It is easy to show that for t ≥ τ ,

EL|xt|p ≤ −pλE|x(t)|p

+ pE
[
|x(t)|p−1|F (x(t), · · · , x(t), t)

− F (x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)|
]

+
p(p− 1)

2
E
[
|x(t)|p−2|G(x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)|2

]
,

where condition (6.36) has been used. Note from inequality (6.35) that for
u, v ≥ 0 and ε1 > 0,

up−1v ≤ (ε1up)
p−1

p

( vp

εp−1
1

) 1
p ≤ ε1(p− 1)

p
up +

1
pεp−1

1

vp.

Applying this and condition (6.37) one obtains that

pE
[
|x(t)|p−1|F (x(t), · · · , x(t), t)− F (x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)|

]
≤ ε1(p− 1)E|x(t)|p +

1
εp−1
1

k∑
i=1

αiE|x(t)− x(t− δi(t)|p.

Similarly one can show that

p(p− 1)
2

E
[
|x(t)|p−2|G(x(t), x(t− δ1(t)), · · · , x(t− δk(t)), t)|2

]
≤ 1

2
ε2(p− 1)(p− 2)E|x(t)|p

+
(p− 1)

ε
(p−2)/2
2

(
β0E|x(t)|p +

k∑
i=1

βiE|x(t− δi(t))|p
)

≤ 1
2
ε2(p− 1)(p− 2)E|x(t)|p +

(p− 1)β̂

ε
(p−2)/2
2

sup
−τ≤θ≤0

E|x(t+ θ)|p,
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where ε2 > 0, like ε1, is to be determined. Summarising the aboves one obtains
that

EL|xt|p ≤ −pλE|x(t)|p + ε1(p− 1)E|x(t)|p

+
1

εp−1
1

k∑
i=1

αiE|x(t)− x(t− δi(t)|p

+
1
2
ε2(p− 1)(p− 2)E|x(t)|p

+
(p− 1)β̂

ε
(p−2)/2
2

sup
−τ≤θ≤0

E|x(t+ θ)|p. (6.40)

On the other hand, by Hölder’s inequality, Theorem 1.7.1 and the assumptions
one can derive that

E|x(t)− x(t− δi(t))|p

≤ 2p−1E
∣∣∣∫ t

t−δi(t)

F (x(s), x(s− δ1(s)), · · · , x(s− δk(s)), s)ds
∣∣∣p

+ 2p−1E
∣∣∣∫ t

t−δi(t)

G(x(s), x(s− δ1(s)), · · · , x(s− δk(s)), s)dB(s)
∣∣∣p

≤ (2τ)p−1

∫ t

t−δi(t)

E|F (x(s), x(s− δ1(s)), · · · , x(s− δk(s)), s)|pds

+ 2p−1C̄pτ
(p−2)/2

∫ t

t−δi(t)

E|G(x(s), x(s− δ1(s)), · · · , x(s− δk(s)), s)|pds

≤ (2τ)p−1

∫ t

t−τ

(
α0E|x(s)|p +

k∑
i=1

αiE|x(s− δi(s))|p
)
ds

+ 2p−1C̄pτ
(p−2)/2

∫ t

t−τ

(
β0E|x(s)|p +

k∑
i=1

βiE|x(s− δi(s))|p
)
ds

≤ 2p−1
[
τp(α0 + α̂) + C̄pτ

p/2β̂
]

sup
−2τ≤θ≤0

E|x(t+ θ)|p

= K sup
−2τ≤θ≤0

E|x(t+ θ)|p (6.41)

for t ≥ τ, 1 ≤ i ≤ k, where K, C̄p etc. have been defined above. Substituting
(6.41) into (6.40) and choosing ε1 = (Kα̂)1/p, ε2 = β̂2/p one then obtains

EL|xt|p ≤ −pλE|x(t)|p

+
(
p(Kα̂)

1
p +

1
2
p(p− 1)β̂

2
p

)
sup

−2τ≤θ≤0
E|x(t+ θ)|p. (6.42)

By (6.39), one can choose q > 1 such that

λ > q
(
(Kα̂)

1
p +

1
2
(p− 1)β̂

2
p

)
.
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Therefore, if E|x(t+ θ)|p < qE|x(t)|p for −2τ ≤ θ ≤ 0, (6.42) implies

EL|xt|p ≤ −p
(
λ− q(Kα̂)

1
p − 1

2
q(p− 1)β̂

2
p

)
E|x(t)|p.

Finally the conclusions follow from Theorems 6.1 and 6.2. The proof is complete.

(ii) Stochastically Perturbed Equations

Let us now turn to consider a stochastic equation of the form

dx(t) = [ψ(x(t), t) + F (xt, t)]dt+ g(xt, t)dB(t) on t ≥ t0 (6.43)

with initial data xt0 = ξ ∈ Cb
Ft0

([−τ, 0];Rd). Here g is as defined in Section
5.2, ψ : Rd × [t0,∞) → Rd and F : C([−τ, 0];Rd) × [t0,∞) → Rd. As before,
assume that ψ, F, g satisfy the local Lipschitz condition and the linear growth
condition (cf. Theorem 2.6), moreover, ψ(0, t) = F (0, t) ≡ 0 and g(0, t) ≡ 0.
Under these conditions, equation (6.43) has a unique global solution. Equation
(6.43) can be regarded as the stochastically perturbed equation of the ordinary
differential equation

ẋ(t) = ψ(x(t), t). (6.44)

To a certain degree it has been known that if equation (6.44) is exponentially
stable and the stochastic perturbation is sufficiently small, then the perturbed
equation (6.43) will remain exponentially stable (cf. Mao, 1994a). The critical
research in this direction is to give better bound for the stochastic perturbation.
We now apply the Razumikhin-type theorems to establish a number of new
results.

Theorem 6.7 Let λ, c1, c2, β1, · · · , β4 all be positive numbers and p ≥ 2, q > 1.
Assume that there exists a function V (x, t) ∈ C2,1(Rd × [−τ,∞);R+) such that

c1|x|p ≤ V (x, t) ≤ c2|x|p for all (x, t) ∈ Rd × [t0 − τ,∞),

and

Vt(x, t) + Vx(x, t)ψ(x, t) ≤ −λV (x, t),

|Vx(x, t)| ≤ β1[V (x, t)]
p−1

p , ||Vxx(x, t)|| ≤ β2[V (x, t)]
p−2

p

for all (x, t) ∈ Rd × [t0,∞). Assume also that

E|F (φ, t)|p ≤ β3EV (φ(0), t) and E|g(φ, t)|p ≤ β4EV (φ(0), t)

for all t ≥ t0 and those φ ∈ Lp
Ft

([−τ, 0];Rd) satisfying

EV (φ(θ), t+ θ) < qEV (φ(0), t) for all − τ ≤ θ ≤ 0. (6.45)
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If

λ > β1β
1
p

3 +
1
2
β2β

2
p

4 , (6.46)

then the trivial solution of equation (6.43) is pth moment exponentially stable.
In addition, if there is a constant K > 0 such that, for all t ≥ t0 and φ ∈
Lp
Ft

([−τ, 0];Rd),

E|ψ(φ(0), t)|p + E|F (φ, t)|p + E|g(φ, t)|p ≤ K sup
−τ≤θ≤0

E|φ(θ)|p,

then the trivial solution of equation (6.43) is also almost surely exponentially
stable.

Proof. Define f(ϕ, t) = ψ(ϕ(0), t) + F (ϕ, t) so that equation (6.43) becomes
equation (6.1). Moreover

LV (ϕ, t) = Vt(ϕ(0), t) + Vx(ϕ(0), t)[ψ(ϕ(0), t) + F (ϕ, t)]

+
1
2
trace

[
gT (ϕ, t)Vxx(ϕ(0), t)g(ϕ, t)

]
.

Hence for t ≥ t0 and those φ ∈ Lp
Ft

([−τ, 0];Rd) satisfying (6.45) one can derive
from the assumptions that

ELV (φ, t) ≤ −λEV (φ(0), t) + β1E
(
[V (φ(0), t)]

p−1
p |F (φ, t)|

)
+
β2

2
E
(
[V (φ(0), t)]

p−2
p |g(φ, t)|2

)
. (6.47)

But for any ε > 0

E
(
[V (φ(0),t)]

p−1
p |F (φ, t)|

)
= E

[(
εV (φ(0), t)

) p−1
p

( |F (φ, t)|p

εp−1

) 1
p

]

≤ ε(p− 1)
p

EV (φ(0), t) +
1

pεp−1
E|F (φ, t)|p

≤
(ε(p− 1)

p
+

β3

pεp−1

)
EV (φ(0), t),

where the elementary inequality (6.35) has been used once again. In particular,
if choose ε = β

1/p
3 , then

E
(
[V (φ(0), t)]

p−1
p |F (φ, t)|

)
≤ β

1
p

3 EV (φ(0), t).

Similarly, one can show

E
(
[V (φ(0), t)]

p−2
p |g(φ, t)|2

)
≤ β

2
p

4 EV (φ(0), t).
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Substituting these into (6.47) yields

ELV (φ, t) ≤ −
(
λ− β1β

1
p

3 − 1
2
β2β

2
p

4

)
EV (φ(0), t).

Now the conclusions follow from Theorems 6.1 and 6.2 immediately. The proof
is complete.

Corollary 6.8 Assume that there is a λ > 0 such that

xTψ(x, t) ≤ −λ|x|2 for all (x, t) ∈ Rd × [t0,∞).

Assume also that there are two functions α1(·), α2(·) ∈ C([−τ, 0];R+) such that

|F (ϕ, t)| ≤
∫ 0

−τ

α1(θ)|ϕ(θ)|dθ and |g(ϕ, t)|2 ≤
∫ 0

−τ

α2(θ)|ϕ(θ)|2dθ

for all t ≥ t0 and ϕ ∈ C([−τ, 0];Rd). If p ≥ 2 and

λ > (τᾱ1)
1
p +

p− 1
2

(τᾱ2)
2
p , (6.48)

where

ᾱ1 =
(∫ 0

−τ

|α1(θ)|
p

p−1 dθ
)p−1

,

ᾱ2 =


max

−τ≤θ≤0
α2(θ), if p = 2,

(∫ 0

−τ

|α2(θ)|
p

p−2 dθ
) p−2

2
, if p > 2,

then the trivial solution of equation (6.43) is pth moment exponentially stable.
In addition, if there is a K > 0 such that |ψ(x, t)| ≤ K|x| for all (x, t) ∈
Rd × [t0,∞), then the trivial solution of equation (6.43) is also almost surely
exponentially stable.

Proof. Let V (x, t) = |x|p. Then

Vt(x, t) + Vx(x, t)ψ(x, t) ≤ −pλ|x|p,
|Vx(x, t)| ≤ p|x|p−1, ||Vxx(x, t)|| ≤ p(p− 1)|x|p−2

for all (x, t) ∈ Rd × [t0,∞). By (6.48) one can choose q > 1 such such that

λ > (qτᾱ1)
1
p +

p− 1
2

(qτᾱ2)
2
p . (6.49)

Now for t ≥ t0 and φ ∈ Lp
Ft

([−τ, 0];Rd) satisfying

E|φ(θ)|p < qE|φ(0)|p for all − τ ≤ θ ≤ 0,
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one can easily show that

E|F (φ, t)|p ≤ qτᾱ1E|φ(0)|p

and
E|g(φ, t)|p ≤ qτᾱ2E|φ(0)|p.

So the conclusions follow from Theorem 6.7 and the proof is complete.

(iii) Examples

In the following two examples we shall omit mentioning the initial data
which are always assumed to be in Cb

Ft0
([−τ, 0];Rd) anyway.

Example 6.9 Consider a linear stochastic differential delay equation

dx(t) = −[Ax(t) +Bx(t− δ(t))]dt+ Cx(t− δ(t))dB(t) on t ≥ t0, (6.50)

where A,B,C all are d×d constant matrices, B(t) is a one-dimensional Brownian
motion and δ : [t0,∞) → [−τ, 0] is continuous.

Case (i). Assume that A+AT is positive definite and its smallest eigenvalue
is denoted by λmin(A+ AT ). In this case, one can easily conclude by Corollary
6.5 that if p ≥ 2 and

1
2
λmin(A+AT ) > ||B||+ p− 1

2
||C||2, (6.51)

then the trivial solution of equation (6.50) is both pth moment and almost surely
exponentially stable.

Case (ii). Assume that A + AT + B + BT is positive definite. To apply
Corollary 6.5, write equation (6.50) as

dx(t) = −[(A+B)x(t)+Bx(t−δ(t))−Bx(t−δ2(t))]dt+Cx(t−δ(t))dB(t) (6.52)

with δ2(t) ≡ 0. By Corollary 6.5, one then sees that if p ≥ 2 and

1
2
λmin(A+AT +B +BT ) > 2||B||+ p− 1

2
||C||2, (6.53)

then the trivial solution of equation (6.52), i.e. (6.50) is pth moment as well as
almost surely exponentially stable. Of course, in this case one may also apply
Corollary 6.6 to obtain a delay-dependent result. For simplicity, choose p = 2.
Note that for any ρ > 0

|Ax+By −Ax̄−Bȳ|2 ≤ (1 + ρ−1)||A||2|x− x̄|2 + (1 + ρ)||B||2|y − ȳ|2.
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One can then apply Corollary 6.6 (with p = 2) to conclude that if

1
2
λmin(A+AT +B +BT )

>
1
2
||C||2 + inf

ρ>0

{
||B||

[
2(1 + ρ)

×
(
τ2
[
(1 + ρ−1)||A||2 + (1 + ρ)||B||2

]
+ τ ||C||2

)] 1
2
}
, (6.54)

then the trivial solution of equation (5.1) is 2nd moment as well as almost surely
exponentially stable.

As a special case, let us look at a one-dimensional linear delay equation

dx(t) = −bx(t− δ(t))dt+ cx(t− δ(t))dB(t) (6.55)

with b > c2/2. In this case, criteria (6.51) and (6.53) do not work but (6.54)
reduces to

b >
c2

2
+ b
√

2(τ2b2 + τc2).

Hence, if

τ <
1

2b2

(√
c4 +

1
2
(2b− c2)2 − c2

)
then the trivial solution of equation (6.55) is both 2nd moment and almost surely
exponentially stable.

Example 6.10 Consider a stochastic oscillator described by a semi-linear
stochastic functional differential equation

z̈(t) + 3ż(t) + 2z(t) = σ1(zt, żt) + σ2(zt, żt)Ḃ(t) (6.56)

on t ≥ t0, where Ḃ(t) is a one-dimensional white noise, i.e. B(t) a Brownian
motion, both σ1, σ2 : C([−τ, 0];R2) → R are locally Lipschitz continuous and,
moreover,

|σ1(ϕ)| ∨ |σ2(ϕ)| ≤
∫ 0

−τ

|ϕ(θ)|dθ, ϕ ∈ C([−τ, 0];R2).

We claim that if

τ <

√
42−

√
14

14
(6.57)

then the trivial solution of equation (6.56) is 2nd moment and almost expo-
nentially stable. To show this, introduce a new variable x = (z, ż)T and write
equation (6.56) as a two-dimensional stochastic functional differential equation

dx(t) = [Ax(t) + F (xt)]dt+G(xt)dB(t), (6.58)
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where

A =
(

0 1
−2 −3

)
, F (ϕ) =

(
0

σ1(ϕ)

)
, G(ϕ) =

(
0

σ2(ϕ)

)
.

It is easy to find

H =
(

1 1
−1 −2

)
, and hence H−1 =

(
2 1
−1 −1

)
,

such that

H−1AH =
(
−1 0
0 −2

)
.

Set

Q = (H−1)TH−1 =
(

5 3
3 2

)
and define V (x, t) = xTQx for x ∈ R2. It is easy to verify

1
7
|x|2 ≤ V (x) ≤ 7|x|2.

We further compute

LV (ϕ, t) = 2ϕT (0)Q[Aϕ(0) + F (ϕ)] +GT (ϕ)QG(ϕ)
≤− 2V (ϕ(0)) + 2|ϕT (0)(H−1)T | |H−1F (ϕ)|+ 2|σ2(ϕ)|2

≤− 2V (ϕ(0)) +
√

14τV (ϕ(0)) +
2√
14τ

|σ1(ϕ)|2 + 2|σ2(ϕ)|2

≤−
(
2−

√
14τ
)
V (ϕ(0)) +

(√
14 + 14τ

) ∫ 0

−τ

V (ϕ(θ))dθ. (6.59)

By condition (6.57) one can find q > 1 such that

2−
√

14(1 + q)τ − 14qτ2 > 0.

Therefore, for any φ ∈ L2
Ft

([−τ, 0];Rd) satisfying EV (φ(θ)) < qEV (φ(0)) on
−τ ≤ θ ≤ 0, (6.59) yields

ELV (φ, t) ≤ −
(
2−

√
14(1 + q)τ − 14qτ2

)
EV (φ(0)).

Thus the conclusions follow from Theorems 6.1 and 6.2.

5.7 STOCHASTIC SELF-STABILIZATION

We consider the following problem of stochastic self-stabilization in this
section. Suppose we are given a nonlinear Itô equation in Rd, namely

dx(t) = f(x(t), t)dt+ ug(x(t), t)dB(t) (7.1)
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on t ≥ t0 = 0 with initial value x(0) = x0 ∈ Rd (it is just for convenience to
set t0 = 0 and the theory clearly works for general t0 ≥ 0). Here u > 0 is
the noise intensity parameter, B(t) is an m-dimensional Brownian motion, both
f : Rd × R+ → Rd and g : Rd × R+ → Rd×m are locally Lipschitz continuous.
We impose the standing hypothesis:

(H7.1) There exists a symmetric positive-definite d × d-matrix Q, and three
positive constants K, α, β with 2β > α, such that

|xTQf(x, t)| ≤ K|x|2,
trace

(
gT (x, t)Qg(x, t)

)
≤ αxTQx,

|xTQg(x, t)|2 ≥ β|xTQx|2

for all t ≥ 0 and x ∈ Rd.

By Theorem 4.3.3, we know that this hypothesis guarantees that for all suffi-
ciently large u the trivial solution of equation (7.1) is almost surely exponentially
stable. Equation (7.1) is regarded as a stochastically stabilized system of an or-
dinary differential equation ẋ(t) = f(x(t), t), which is unstable in general. In
other words, equation (7.1) is stabilized by white noise provided that the noise
intensity is large enough. We ask whether it is true that equation (7.1) stabilizes
itself if the intensity parameter u is replaced by e.g.

∫ t

0
|x(s)|ds. That is, is the

trivial solution of the stochastic integrodifferential equation

dx(t) = f(x(t), t)dt+
(∫ t

0

|x(s)|ds
)
g(x(t), t)dB(t) (7.3)

almost surely L1(R+;Rd)-stable (i.e.
∫∞
0
|x(t)|dt < ∞ a.s.)? The main aim

of this section is to give a positive answer. A rough argument goes as follows.
If equation (7.3) is not almost surely L1(R+;Rd)-stable, then for some ω ∈ Ω
(with positive probability)

∫∞
0
|x(t, ω)|dt = ∞. Consequently for all large t,∫ t

0
|x(s, ω)|ds will be sufficiently large. Therefore, by the property of equation

(7.1), one should have
∫∞
0
|x(t, ω)|dt <∞, and this yields a contradiction.

This argument is, of course, not a mathematical proof, but indicates that it
is possible to replace the noise intensity parameter u in various ways in order to
stabilize the system more precisely. One may replace u by

∫ t

0
|r(s)x(s)|pds, where

p > 0 and r(·) is a continuous Rn×d-valued function defined on R+ satisfying
||r(t)|| ≤ Meγt for all t ≥ 0, which shall be called a convergence rate function.
In this section we shall show that the stochastic integrodifferential equation

dx(t) = f(x(t), t)dt+
(∫ t

0

|r(s)x(s)|pds
)
g(x(t), t)dB(t) (7.4)

has the property ∫ ∞

0

|r(t)x(t)|pdt <∞ a.s. (7.5)



192 Stochastic Functional Differential Equations [Ch.5

Before proving this result, let us point out that by choosing various convergence
rate functions, one can stabilize the system in different ways. For example, in
order to stabilize the i-th component of the solution in the sense

∫∞
0
|xi(t)|pdt <

∞ a.s., one can choose the convergence rate function

r(t) = (0, · · · , 0, 1︸ ︷︷ ︸
i times

, 0, · · · , 0)1×d.

To stabilize the difference between the i-th and j-th component of the solution,
in the sense

∫∞
0
|xi(t)− xj(t)|pdt <∞ a.s., one can choose

r(t) = (0, · · · , 0, 1︸ ︷︷ ︸
i times

, 0, · · · , 0,−1

︸ ︷︷ ︸
j times

, 0, · · · , 0)1×d.

Moreover, to stabilize the system in the sense
∫∞
0
eγt|x(t)|pdt <∞ a.s., one can

choose r(t) = eγt/pId×d where Id×d is the d× d identity matrix.
Let us now turn to prove property (7.5). We first point out that the local

Lipschitz continuity of the coefficients f and g as well as the standing hypothesis
(H7.1) guarantee the existence and uniqueness of the global solution, denoted by
x(t;x0), of equation (7.4) (see Theorem 2.9 and the detailed proof can be found in
Mao, 1996c). It is also clear that equation (7.4) admits a trivial solution x(t; 0) =
0 for hypothesis (H7.1) implies that f(0, t) ≡ 0 and g(0, t) ≡ 0. To prove the
main result, we need prepare a lemma which shows that under hypothesis (H7.1)
the solution will never reach zero if it starts from a non-zero point.

Lemma 7.1 Let hypothesis (H7.1) hold. Then the solution of equation (7.4)
has the property that

P{x(t;x0) 6= 0 for all t ≥ 0} = 1

provided x0 6= 0.

Proof. Suppose the assertion is false. Then there exists some x0 6= 0 such that
P (τ <∞) > 0, where τ is the time of first reaching state zero, i.e.

τ = inf{t ≥ 0 : x(t) = 0}.

Here we write x(t;x0) = x(t). Hence one can find t̄ > 0 and θ > 0 large enough
to ensure that P (B) > 0, where

B = {ω : τ ≤ t̄ and |x(t)| ≤ θ − 1 for all 0 ≤ t ≤ τ}.

For each 0 < ε < |x0|, define

τε = inf{t ≥ 0 : |x(t)| ≤ ε or |x(t)| ≥ θ}.
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Then by Itô’s formula, for 0 ≤ t ≤ t̄,

E[|xT (t ∧ τε)Qx(t ∧ τε)|−1]

≤|xT
0 Qx0|−1 + 2E

∫ t∧τε

0

|xT (s)Qx(s)|−2|xT (s)Qf(x(s), s)|ds

+4E
∫ t∧τε

0

|xT (s)Qx(s)|−3|xT (s)Qg(x(s), s)|2
(∫ s

0

|r(u)x(u)|pdu
)2

ds.

By (H7.1), one can derive that

E[|xT (t ∧ τε)Qx(t ∧ τε)|−1]

≤|xT
0 Qx0|−1 + µE

∫ t∧τε

0

|xT (s)Qx(s)|−1ds

≤|xT
0 Qx0|−1 + µ

∫ t

0

E[|xT (s ∧ τε)Qx(s ∧ τε)|−1]ds

where µ is a constant dependent of K,α, β, t̄, θ,Q but independent of ε. An
application of the Gronwall inequality yields

E[|xT (t̄ ∧ τε)Qx(t̄ ∧ τε)|−1] ≤ |xT
0 Qx0|−1eµt̄.

Note that if ω ∈ B, then τε ≤ t̄ and |x(τε)| = ε. It therefore follows from the
above inequality that

(ε2||Q||)−1P (B) ≤ |xT
0 Qx0|−1eµt̄.

Letting ε → 0 one obtains P (B) = 0, but this contradicts the definition of B.
The proof is therefore complete.

We can now establish the main results of this section. To make the state-
ment more clear, we state the condition on the convergence rate function r(t) as
another hypothesis:

(H7.2) There exists a pair of constants M > 0 and γ ≥ 0 such that

||r(t)|| ≤Meγt for all t ≥ 0.

Theorem 7.2 Let (H7.1) and (H7.2) hold. Then the solution of equation (7.4)
has the property that ∫ ∞

0

|r(t)x(t;x0)|pdt <∞ a.s. (7.5)

for all x0 ∈ Rd.

Proof. Since hypothesis (H7.1) guarantees x(t; 0) ≡ 0, one only needs to show
that (7.5) holds for x0 6= 0. For any x0 6= 0, by Lemma 7.1, the solution
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x(t;x0) 6= 0 for all t ≥ 0 almost surely. Suppose (7.5) is false, then there exists
some x0 6= 0 for which P (Ω∗) > 0, where

Ω∗ = {ω ∈ Ω :
∫ ∞

0

|r(t)x(t;x0)|pdt = ∞}.

For convenience, again write x(t;x0) = x(t). By Itô’s formula and hypothesis
(H7.1), one can show that for any t ≥ 0

log
(
xT (t)Qx(t)

)
≤ log(xT

0 Qx0) +
2Kt

λmin(Q)
+ α

∫ t

0

(∫ s

0

|r(v)x(v)|pdv
)2

ds

−2
∫ t

0

(∫ s

0

|r(v)x(v)|pdv
)2 |xT (s)Qg(x(s), s)|2(

xT (s)Qx(s)
)2 ds+M(t), (7.6)

where

M(t) = 2
∫ t

0

(∫ s

0

|r(v)x(v)|pdv
) xT (s)Qg(x(s), s)

xT (s)Qx(s)
dB(s)

is a continuous martingale vanishing at t = 0. Let k = 1, 2, · · ·. Then by the
exponential martingale inequality (i.e. Theorem 1.7.4)

P
(
ω : sup

0≤t≤k

[
M(t)− 2β − α

8β
〈M(t),M(t)〉

]
>

8β log k
2β − α

)
≤ 1
k2
,

where

〈M(t),M(t)〉 = 4
∫ t

0

(∫ s

0

|r(v)x(v)|pdv
)2 |xT (s)Qg(x(s), s)|2(

xT (s)Qx(s)
)2 ds.

Hence the well-known Borel–Cantelli lemma yields that for almost all ω ∈ Ω
there exists a random integer k1(ω) such that for all k ≥ k1

sup
0≤t≤k

[
M(t)− 2β − α

8β
〈M(t),M(t)〉

]
≤ 8β log k

2β − α
,

that is, for 0 ≤ t ≤ k,

M(t) ≤ 8β log k
2β − α

+
2β − α

8β
〈M(t),M(t)〉

≤ 8β log k
2β − α

+
2β − α

2β

∫ t

0

(∫ s

0

|r(v)x(v)|pdv
)2 |xT (s)Qg(x(s), s)|2(

xT (s)Qx(s)
)2 ds. (7.7)

Substituting (7.7) into (7.6) and then applying (H7.1) one obtains that

log
(
xT (t)Qx(t)

)
≤ log(xT

0 Qx0) +
2Kt

λmin(Q)
+

8β log k
2β − α

− 2β − α

2

∫ t

0

(∫ s

0

|r(v)x(v)|pdv
)2

ds (7.8)
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for all 0 ≤ t ≤ k, k ≥ k1 almost surely. Recalling the definition of Ω∗, one sees
that for every ω ∈ Ω∗, there exists a random integer k2(ω) such that

∫ t

0

|r(s)x(s)|pds ≥

√
4K/λmin(Q) + 4γ + 8

2β − α
for all t ≥ k2. (7.9)

It then follows from (7.8) and (7.9) that for almost all ω ∈ Ω∗, if k − 1 ≤ t ≤
k, k ≥ k1 ∨ (k2 + 1),

log
(
xT (t)Qx(t)

)
≤ log(xT

0 Qx0) +
2Kk

λmin(Q)
+

8β log k
2β − α

− 2β − α

2

∫ t

k2

(∫ s

0

|r(v)x(v)|pdv
)2

ds

≤ log(xT
0 Qx0) +

2Kk
λmin(Q)

+
8β log k
2β − α

− (2K/λmin(Q) + 2γ + 4)(k − 1− k2)

= log(xT
0 Qx0) +

2K(k2 + 1)
λmin(Q)

+
8β log k
2β − α

− 2(γ + 2)(k − 1− k2).

Consequently,

1
t

log
(
xT (t)Qx(t)

)
≤ 1
k − 1

(
log(xT

0 Qx0) +
2K(k2 + 1)
λmin(Q)

+
8β log k
2β − α

− 2(γ + 2)(k − 1− k2)
)
.

It then follows that

lim sup
t→∞

1
t

log
(
xT (t)Qx(t)

)
≤ −2(γ + 2) for almost all ω ∈ Ω∗. (7.10)

Thus, for almost all ω ∈ Ω∗, there exists a random number k3(ω) such that

1
t

log
(
xT (t)Qx(t)

)
≤ −2(γ + 2) for all t ≥ k3,

and hence

|x(t)| ≤ e−(γ+2)t√
λmin(Q)

for all t ≥ k3.

Therefore, by hypothesis (H7.2), for almost all ω ∈ Ω∗∫ ∞

0

|r(t)x(t)|pdt ≤
∫ k3

0

Mpepγt|x(t)|pdt+
∫ ∞

k3

Mpe−pt

[λmin(Q)]p/2
dt <∞.

However, this contradicts the definition of Ω∗. So (7.5) must hold, and the proof
is complete.

The following Theorem gives more precise estimates for the solution.
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Theorem 7.3 Let (H7.1) and (H7.2) hold. Then for every x0 ∈ Rd, either∫ ∞

0

|r(t)x(t;x0)|pdt ≤

√
2K

(2β − α)λmin(Q)
(7.11)

or
lim sup

t→∞

1
t

log(|x(t;x0)|) < 0 (7.12)

holds for almost all ω ∈ Ω.

Proof. Again one only needs to show the conclusions for all x0 6= 0. Fix x0 6= 0
arbitrarily, and write x(t;x0) = x(t). Define

Ω̄ =

{
ω ∈ Ω :

∫ ∞

0

|r(t)x(t)|pdt >

√
2K

(2β − α)λmin(Q)

}
.

Clearly one only needs to show that (7.12) holds for almost all ω ∈ Ω̄. For each
i = 1, 2, · · ·, define

Ω̄i =

{
ω ∈ Ω̄ :

∫ ∞

0

|r(t)x(t)|pdt > (1 + i−1)

√
2K

(2β − α)λmin(Q)

}
.

Now, Ω̄ =
⋃∞

i=1 Ω̄i, and hence one only needs to show that for each i ≥ 1, (7.12)
holds for almost all ω ∈ Ω̄i. Fix any i ≥ 1. Then in the same way as (7.8) one
can derive that for each ω ∈ Ω− Ω̂, with Ω̂ a P -null set, there exists a random
integer k4(ω) such that

log
(
xT (t)Qx(t)

)
≤ log(xT

0 Qx0) +
2Kt

λmin(Q)
+

4β(1 + i−1) log k
2β − α

− 2β − α

1 + i−1

∫ t

0

(∫ s

0

|r(v)x(v)|pdv
)2

ds (7.13)

for all 0 ≤ t ≤ k, k ≥ k4. On the other hand, for every ω ∈ Ω̄i there exists a
random number k5(ω) such that∫ t

0

|r(s)x(s)|pds ≥ (1 + i−1)

√
2K

(2β − α)λmin(Q)
for all t ≥ k5. (7.14)

It then follows from (7.13) and (7.14) that for all ω ∈ Ω̄i − Ω̂, if k − 1 ≤ t ≤
k, k ≥ k4 ∨ (k5 + 1),

log
(
xT (t)Qx(t)

)
≤ log(xT

0 Qx0) +
2K(k5 + 1)
λmin(Q)

+
4β(1 + i−1) log k

2β − α
− 2K
iλmin(Q)

(k − 1− k5).
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This implies that

lim sup
t→∞

1
t

log
(
xT (t)Qx(t)

)
≤ − 2K

iλmin(Q)
for all ω ∈ Ω̄i − Ω̂.

Consequently,

lim sup
t→∞

1
t

log(|x(t)|) ≤ − K

iλmin(Q)
< 0 for all ω ∈ Ω̄i − Ω̂.

The proof is now complete.
Theorem 7.3 shows that if∫ ∞

0

|r(t)x(t;x0)|pdt >

√
2K

(2β − α)λmin(Q)

then the solution x(t;x0) tends to zero exponentially. This is quite natural since
one can show by Theorem 4.3.3 that under hypothesis (H7.1) equation (7.1) is
almost surely exponentially stable provided the noise intensity parameter

u >

√
2K

(2β − α)λmin(Q)
.

On the other hand, if∫ ∞

0

|r(t)x(t;x0)|pdt ≤

√
2K

(2β − α)λmin(Q)

then the noise intensity may not be large enough to stabilize the system ex-
ponentially. In other words, if the noise intensity parameter u is replaced by∫ t

0
|r(s)x(s)|pds, then equation (7.1) may not always stabilize itself exponen-

tially. But we now start to discuss how to stabilize equation (7.1) in the sense
of almost sure asymptotic stability or exponential stability. By replacing the
noise intensity parameter u with sup0≤s≤t |r(s)x(s)|, equation (7.1) becomes a
stochastic functional differential equation

dx(t) = f(x(t), t)dt+
(

sup
0≤s≤t

|r(s)x(s)|
)
g(x(t), t)dB(t) (7.15)

on t ≥ 0 with initial value x(0) = x0 ∈ Rd. It can be shown in the same way as
Lemma 7.1 that under hypothesis (H7.1) the unique global solution of equation
(7.15), again denoted by x(t;x0), will never reach zero if it starts from a non-zero
point. Moreover, we have the following result.

Theorem 7.4 Let (H7.1) and (H7.2) hold. Then for all x0 ∈ Rd, the solution
of equation (7.15) has the property

sup
0≤t<∞

|r(t)x(t;x0)| <∞ a.s. (7.16)
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Furthermore,
(i) if λmin(rT (t)r(t)) →∞ as t→∞, then

lim
t→∞

|x(t;x0)| = 0 a.s. (7.17)

(ii) if lim inft→∞ log[λmin(rT (t)r(t))]/t ≥ λ > 0, then

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −λ
2

a.s. (7.18)

Proof. Suppose (7.16) is false, then there exists some x0 6= 0 for which P (Ω∗) >
0, where

Ω∗ = {ω ∈ Ω : sup
0≤t<∞

|r(t)x(t;x0)| = ∞}.

Again write x(t;x0) = x(t). In the same way as the proof of (7.8), one can show
that there exists a finite random integer k6(ω) such that

log
(
xT (t)Qx(t)

)
≤ log(xT

0 Qx0) +
2Kt

λmin(Q)
+

8β log k
2β − α

− 2β − α

2

∫ t

0

(
sup

0≤v≤s
|r(v)x(v)|

)2

ds

for all 0 ≤ t ≤ k, k ≥ k6 almost surely. By the definition of Ω∗, for every ω ∈ Ω
there exists a random integer k7(ω) such that

sup
0≤s≤t

|r(s)x(s)| ≥

√
2(2K/λmin(Q) + 2(γ + 2))

2β − α
for all t ≥ k7.

One can then derive from these two inequalities that for almost all ω ∈ Ω∗, there
exists a random number k8(ω) such that

|x(t)| ≤ e−(γ+1)t√
λmin(Q)

for all t ≥ k8.

Therefore, by hypothesis (H7.2), for almost all ω ∈ Ω∗

sup
0≤t<∞

|r(t)x(t)| ≤ sup
0≤t≤k8

Meγt|x(t)|+ sup
k8≤t<∞

Me−t√
λmin(Q)

<∞.

However this contradicts the definition of Ω∗. So (7.16) must hold, whence both
(7.17) and (7.18) follow from (7.16) immediately. The proof is complete.

Before discussing specific examples, let us point out that it is possible to
extend Theorem 7.3 to the above case to obtain even more precise estimates for
the solutions, but the details are left to the reader.
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Let us now illustrate our theory by discussing several examples.

Example 7.5 First, consider the one-dimensional equation

dx(t) = f(x(t), t)dt+
(∫ t

0

es|x(s)|pds
)
σx(t)dB(t) (7.19)

on t ≥ 0 with x(0) = x0 ∈ R. Here B(t) is a one-dimensional Brownian motion,
σ 6= 0, p > 0 and f : R×R+ → R satisfies

|f(x, t)| ≤ K|x| for all x ∈ R, t ≥ 0 (7.20)

and some K > 0. It is easy to see that hypothesis (H7.1) holds with Q = 1 and
α = β = σ2. Hence, by Theorem 7.2, the solution of equation (7.19) satisfies∫ ∞

0

et|x(t;x0)|pdt <∞ a.s.

Example 7.6 Consider the d-dimensional semi-linear equation

dx(t) = f(x(t), t)dt+
(∫ t

0

|x(s)|ds
) m∑

i=1

Gix(s)dBi(s) (7.21)

on t ≥ 0 with x(0) = x0 ∈ Rd. Here f(x, t) is as defined before and Gi (1 ≤ i ≤
m) are all symmetric positive definite d× d-matrices. Note that for all x ∈ Rd

m∑
i=1

|Gix|2 ≤
m∑

i=1

||Gi||2|x|2

and
m∑

i=1

|xTGix|2 ≥
m∑

i=1

λ2
min(Gi)|x|4.

Assume that

2
m∑

i=1

λ2
min(Gi) >

m∑
i=1

||Gi||2, (7.22)

and also that there exists a positive constant K such that

|xT f(x, t)| ≤ K|x|2 for all x ∈ Rd, t ≥ 0. (7.23)

Then hypothesis (H7.1) is satisfied with Q the identity matrix and

α =
m∑

i=1

||Gi||2, β =
m∑

i=1

λ2
min(Gi).
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Therefore, by Theorem 7.2, equation (7.21) is almost surely L(R+;Rd)-stable,
that is,

∫∞
0
|x(t;x0)|dt <∞ a.s. Moreover, applying Theorem 7.3 one can obtain

even more precise estimates for the solution: for every x0 ∈ Rd, either

∫ ∞

0

|x(t;x0)|dt ≤

√
2K∑m

i=1(2λ
2
min(Gi)− ||Gi||2)

or
lim sup

t→∞

1
t

log(|x(t;x0)|) < 0

holds for almost all ω ∈ Ω.

Example 7.7 Finally, let us consider the two-dimensional nonlinear equation

dx(t) = f(x(t))dt+
(

sup
0≤s≤t

es|x1(s)− x2(s)|
)
g(x(t))dB(t) (7.24)

on t ≥ 0 with x(0) = x0 ∈ R2. Here B(t) is a one-dimensional Brownian motion
and

f(x) =
(

x1 sinx2 − x2
2

x2 cosx1 + x1x2

)
, g(x) =

(
8x1 + cosx2

9x2 + sinx1

)
for x = (x1, x2)T ∈ R2. It is easy to verify that

|xT f(x)| ≤ |x|2, |g(x)|2 ≤ 91.6|x|2, |xT g(x)|2 ≥ 54.4|x|4.

So hypothesis (H7.1) is satisfied. Also hypothesis (H7.2) holds since r(t) =
et(1,−1). By Theorem 7.4, one therefore sees that the solution of equation
(7.24) satisfies

sup
0≤t<∞

et|x1(t;x0)− x2(t;x0)| <∞ a.s.,

which implies

lim sup
t→∞

1
t

log |x1(t;x0)− x2(t;x0)| ≤ −1 a.s.

That is, the first and second component of the solution will tend to each other
almost surely exponentially fast.



6

Stochastic

Equations of Neutral Type

6.1 INTRODUCTION

In this chapter we introduce another class of stochastic equations depending
on past and present values but that involves derivatives with delays as well as
the function itself. Such equations historically have been referred to as neutral
stochastic functional differential equations, or neutral stochastic differential delay
equations. Such equations are more difficult to motivate but often arise in the
study of two or more simple oscillatory systems with some interconnections
between them. For example, Brayton (1976) considered the problem of lossless
transmission. This problem may be described by the following system of partial
differential equations

L
∂i

∂t
= −∂υ

∂x
, C

∂υ

∂t
= − ∂i

∂x
, 0 < x < 1, t > 0,

with the boundary conditions

E − υ(0, t)−Ri(0, t) = 0, C1
dυ(1, t)
dt

= i(1, t)− g(υ(1, t)).

We now indicate how one can transform this problem into a neutral differential
delay equation. If s = (LC)−1/2 and z = (L/C)1/2, then the general solution of
the partial differential equation is given by

υ(x, t) = φ(x− st) + ψ(x+ st), i(x, t) =
1
z

[
φ(x− st)− ψ(x+ st)

]
201
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or
2φ(x− st) = υ(x, t) + zi(x, t), 2ψ(x+ st) = υ(x, t)− zi(x, t).

This implies

2φ(−st) = υ
(
1, t+

1
z

)
+zi

(
1, t+

1
s

)
,

2ψ(st) = υ
(
1, t− 1

z

)
−zi

(
1, t− 1

s

)
.

Using these expressions in the general solution and using the first boundary
condition at t− 1/s, one obtains that

i(1, t)−Ki
(
1, t− 2

s

)
= α− 1

z
υ(1, t)− K

z
υ
(
1, t− 2

s

)
,

where K = (z − R)/(z + R), α = 2E/(z + R). Inserting the second boundary
condition and letting u(t) = υ(1 + t), we obtain the equation

d

dt

[
u(t)−Ku

(
t− 2

s

)]
= f

(
u(t), u

(
t− 2

s

))
, (1.1)

where
C1f(u, ū) = α− 1

z
u− K

z
ū− g(u) +Kg(ū).

Another similar equation encountered by Rubanik (1969) in his study of vibrat-
ing masses attached to an elastic bar is{

ẍ(t) + ω2
1x(t) = εf1(x(t), ẋ(t), y(t), ẏ(t)) + γ1ÿ(t− τ),

ÿ(t) + ω2
2x(t) = εf2(x(t), ẋ(t), y(t), ẏ(t)) + γ2ẍ(t− τ).

(1.2)

In studying the collision problem in electrodynamics, Driver (1963) considered
the system of neutral type

ẋ(t) = f1(x(t), x(δ(t))) + f2(x(t), x(δ(t)))ẋ(δ(t)), (1.3)

where δ(t) ≤ t. Generally, a neutral functional differential equation has the form

d

dt
[x(t)−D(xt)] = f(xt, t). (1.4)

Taking into account stochastic perturbations, we are led to a neutral stochastic
functional differential equation

d[x(t)−D(xt)] = f(xt, t)dt+ g(xt, t)dB(t). (1.5)

In this chapter we shall discuss various properties of this stochastic equation
of neutral type. However, the presentation will not be as detailed as the one
for the stochastic functional differential equations of the previous chapter. We
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concentrate only on those proofs that are significantly different from the ones
for functional equations.

6.2 NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL
EQUATIONS

As usual, we are still working on the given complete probability space
(Ω,F , P ) with the filtration {Ft}t≥0 satisfying the usual conditions, and B(t) is
the given m-dimensional Brownian motion defined on the space. Let τ > 0 and
0 ≤ t0 < T <∞. Let

D : C([−τ, 0];Rd) → Rd,

f : C([−τ, 0];Rd)× [t0, T ] → Rd,

g : C([−τ, 0];Rd)× [t0, T ] → Rd×m

all be Borel measurable. Consider the d-dimensional neutral stochastic func-
tional differential equation

d[x(t)−D(xt)] = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T. (2.1)

By the definition of Itô’s stochastic differential, equation (2.1) means that for
every t0 ≤ t ≤ T ,

x(t)−D(xt) = x(t0)−D(xt0) +
∫ t

t0

f(xs), s)ds+
∫ t

t0

g(xs, s)dB(s). (2.2)

For the initial-value problem of this equation, we must specify the initial data
on the entire interval [t0 − τ, t0], and hence we impose the initial condition:

xt0 = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ L2
Ft0

([−T, 0];Rd), (2.3)

that is, ξ is an Ft0-measurable C([−τ, 0];Rd)-valued random variable such that
E||ξ||2 <∞. The initial-value problem for equation (2.1) is to find the solution
of equation (2.1) satisfying the initial data (2.3). To be more precise, we give
the definition of the solution.

Definition 2.1 An Rd-valued stochastic process x(t) on t0 − τ ≤ t ≤ T is
called a solution to equation (2.1) with initial data (2.3) if it has the following
properties:

(i) it is continuous and {xt}t0≤t≤T is Ft-adapted;
(ii) {f(xt, t)} ∈ L1([t0, T ];Rd) and {g(xt, t)} ∈ L2([t0, T ];Rd×m);
(iii) xt0 = ξ and (2.2) holds for every t0 ≤ t ≤ T .

A solution x(t) is said to be unique if any other solution x̄(t) is indistinguishable
from it, that is

P{x(t) = x̄(t) for all t0 − τ ≤ t ≤ T} = 1.
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Let us now begin to establish the theory of the existence and uniqueness
of the solution. Obviously, the Lipschitz condition as well as the linear growth
condition on the functionals f and g are required, for equation (2.1) reduces to
the stochastic functional differential equation discussed in the previous chapter if
D(·) ≡ 0. The question is: What condition should be imposed on the functional
D? It turns out that D should be uniformly Lipschitz continuous with the
Lipschitz coefficient less than 1.

Theorem 2.2 Assume that there exist two positive constants K̄ and K such
that for all ϕ, φ ∈ C([−τ, 0];Rd) and t ∈ [t0, T ],

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ K̄||ϕ− φ||2; (2.4)

and for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0, T ],

|f(ϕ, t)|2
∨
|g(ϕ, t)|2 ≤ K(1 + ||ϕ||2). (2.5)

Assume also that there is a κ ∈ (0, 1) such that for all ϕ, φ ∈ C([−τ, 0];Rd),

|D(ϕ)−D(φ)| ≤ κ||ϕ− φ||. (2.6)

Then there exists a unique solution x(t) to equation (2.1) with initial data (2.3).
Moreover, the solution belongs to M2([t0 − τ, T ];Rd).

In order to prove this theorem, let us present two useful lemmas.

Lemma 2.3 For any a, b ≥ 0 and 0 < α < 1 we have

(a+ b)2 ≤ a2

α
+

b2

1− α
.

Proof. Note that for any ε > 0

(a+ b)2 = a2 + 2ab+ b2 ≤ (1 + ε)a2 + (1 + ε−1)b2.

Letting ε = (1− α)/α we obtain the required inequality.

Lemma 2.4 Let (2.5) and (2.6) hold. Let x(t) be a solution to equation (2.1)
with initial data (2.3). Then

E
(

sup
t0−τ≤t≤T

|x(t)|2
)
≤

(
1 +

4 + κ
√
κ

(1− κ)(1−
√
κ)
E||ξ||2

)
× exp

[
3K(T − t0)(T − t0 + 4)

(1− κ)(1−
√
κ)

]
. (2.7)
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In particular, x(t) belongs to M2([t0 − τ, T ];Rd).

Proof. For every integer n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : ||xt|| ≥ n}.

Clearly, τn ↑ T a.s. Set xn(t) = x(t∧τn) for t ∈ [t0−τ, T ]. Then, for t0 ≤ t ≤ T ,

xn(t) = D(xn
t )−D(ξ) + Jn(t),

where

Jn(t) = ξ(0) +
∫ t

t0

f(xn
s , s)I[[t0,τn]](s)ds+

∫ t

t0

g(xn
s , s)I[[t0,τn]](s)dB(s).

Applying Lemma 2.3 twice one derives that

|xn(t)|2 ≤ 1
κ
|D(xn

t )−D(ξ)|2 +
1

1− κ
|Jn(t)|2

≤ κ||xn
t − ξ||2 +

1
1− κ

|Jn(t)|2

≤
√
k||xn

t ||2 +
κ

1−
√
κ
||ξ||2 +

1
1− κ

|Jn(t)|2,

where condition (2.6) has also been used. Hence

E
(

sup
t0≤s≤t

|xn(s)|2
)
≤
√
κE

(
sup

t0−τ≤s≤t
|xn(s)|2

)
+

κ

1−
√
κ
E||ξ||2 +

1
1− κ

E
(

sup
t0≤s≤t

|Jn(s)|2
)
.

Noting that supt0−τ≤s≤t |xn(s)|2 ≤ ||ξ||2 + supt0≤s≤t |xn(s)|2, one sees that

E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤
√
κE

(
sup

t0−τ≤s≤t
|xn(s)|2

)
+

1 + κ−
√
κ

1−
√
κ

E||ξ||2 +
1

1− κ
E

(
sup

t0≤s≤t
|Jn(s)|2

)
.

Consequently

E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤ 1 + κ−

√
κ

(1−
√
κ)2

E||ξ||2

+
1

(1− κ)(1−
√
κ)
E

(
sup

t0≤s≤t
|Jn(s)|2

)
. (2.8)
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On the other hand, by Hölder’s inequality, Doob’s martingale inequality and the
linear growth condition (2.5), one can show that

E
(

sup
t0≤s≤t

|Jn(s)|2
)
≤ 3E||ξ||2 + 3K(T − t0 + 4)

∫ t

t0

(1 + E||xn
s ||2)ds.

Substituting this into (2.8) yields that

E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤ 4 + κ

√
κ

(1− κ)(1−
√
κ)
E||ξ||2

+
3K(T − t0 + 4)
(1− κ)(1−

√
κ)

∫ t

t0

(1 + E||xn
s ||2)ds.

Therefore

1 + E
(

sup
t0−τ≤s≤t

|xn(s)|2
)
≤ 1 +

4 + κ
√
κ

(1− κ)(1−
√
κ)
E||ξ||2

+
3K(T − t0 + 4)
(1− κ)(1−

√
κ)

∫ t

t0

[
1 + E

(
sup

t0−τ≤r≤s
|xn(r)|2

)]
ds.

Now the Gronwall inequality yields that

1 + E
(

sup
t0−τ≤t≤T

|xn(t)|2
)

≤
(
1 +

4 + κ
√
κ

(1− κ)(1−
√
κ)
E||ξ||2

)
exp

[
3K(T − t0)(T − t0 + 4)

(1− κ)(1−
√
κ)

]
.

Consequently

E
(

sup
t0−τ≤t≤τn

|x(t)|2
)

≤
(
1 +

4 + κ
√
κ

(1− κ)(1−
√
κ)
E||ξ||2

)
exp

[
3K(T − t0)(T − t0 + 4)

(1− κ)(1−
√
κ)

]
.

Finally the required inequality (2.7) follows by letting n → ∞. The proof is
complete.

Proof of Theorem 2.2 Uniqueness. Let x(t) and x̄(t) be the two solutions. By
Lemma 2.4, both of them belong to M2([t0 − τ, T ];Rd). Note that

x(t)− x̄(t) = D(xt)−D(x̄t) + J(t),

where

J(t) =
∫ t

t0

[f(xs, s)− f(x̄s, s)]ds+
∫ t

t0

[g(xs, s)− g(x̄s, s)]dB(s).
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By Lemma 2.3 and condition (2.6), one sees easily that

|x(t)− x̄(t)|2 ≤ κ||xt − xt||2 +
1

1− κ
|J(t)|2.

Therefore

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)

≤ κE
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)

+
1

1− κ
E

(
sup

t0≤s≤t
|J(s)|2

)
,

which implies

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 1

(1− κ)2
E

(
sup

t0≤s≤t
|J(s)|2

)
.

On the other hand, one can easily show that

E
(

sup
t0≤s≤t

|J(s)|2
)
≤ 2K̄(T − t0 + 4)

∫ t

t0

E||xs − x̄s||2ds

≤ 2K̄(T − t0 + 4)
∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− x̄(r)|2
)
ds.

Therefore

E
(

sup
t0≤s≤t

|x(s)− x̄(s)|2
)
≤ 2K̄(T − t0 + 4)

(1− κ)2

∫ t

t0

E
(

sup
t0≤r≤s

|x(r)− x̄(r)|2
)
ds.

The Gronwall inequality then yields that

E
(

sup
t0≤t≤T

|x(t)− x̄(t)|2
)

= 0.

This implies that x(t) = x̄(t) for t0 ≤ t ≤ T , hence for all t0− τ ≤ t ≤ T , almost
surely. The uniqueness has been proved.

Existence. We divide the whole proof of the existence into two steps:
Step 1. We impose an additional condition: T − t0 is sufficiently small so

that

δ := κ+
2K̄(T − t0 + 4)(T − t0)

1− κ
< 1. (2.9)

Define x0
t0 = ξ and x0(t) = ξ(0) for t0 ≤ t ≤ T . For each n = 1, 2, · · ·, set xn

t0 = ξ
and define, by the Picard iterations,

xn(t)−D(xn−1
t ) = ξ(0)−D(ξ)

+
∫ t

t0

f(xn−1
s , s)ds+

∫ t

t0

g(xn−1
s , s)dB(s) (2.10)
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for t ∈ [t0, T ]. It is not difficult to show that xn(·) ∈ M2([t0 − τ, T ];Rd) (the
details are left to the reader). Note that for t0 ≤ t ≤ T ,

x1(t)− x0(t) = x1(t)− ξ(0) = D(x0
t )−D(ξ)

+
∫ t

t0

f(x0
s, s)ds+

∫ t

t0

g(x0
s, s)dB(s).

In the similar way as in the proof of the uniqueness one derives that

E
(

sup
t0≤t≤T

|x1(t)− x0(t)|2
)

≤ κE
(

sup
t0≤t≤T

||x0
t − ξ||2

)
+

2K(T − t0 + 4)
1− κ

E

∫ T

t0

(1 + ||x0
t ||2)dt

≤ 2κE||ξ||2 +
2K(T − t0 + 4)

1− κ
(1 + E||ξ||2)(T − t0) := C. (2.11)

Note also that for n ≥ 1 and t0 ≤ t ≤ T ,

xn+1(t)− xn(t) = D(xn
t )−D(xn−1

t )

+
∫ t

t0

[f(xn
s , s)− f(xn−1

s , s)]ds+
∫ t

t0

[g(xn
s , s)− g(xn−1

s , s)]dB(s).

In the same way as in the proof of the uniqueness one derives that

E
(

sup
t0≤t≤T

|xn+1(t)− xn(t)|2
)
≤ κE

(
sup

t0≤t≤T
|xn(t)− xn−1(t)|2

)
+

2K̄(T − t0 + 4)
1− κ

∫ T

t0

E
(

sup
t0≤s≤t

|xn(s)− xn−1(s)|2
)
dt

≤ δE
(

sup
t0≤t≤T

|xn(t)− xn−1(t)|2
)

≤ δnE
(

sup
t0≤t≤T

|x1(t)− x0(t)|2
)

≤ Cδn, (2.12)

where (2.11) has been used. Using the additional condition (2.9), one can show
from (2.12) that there is a solution to equation (2.1) in the same way as in the
proof of Theorem 2.3.1.

Step 2. We need to remove the additional condition (2.9). Let σ > 0 be
sufficiently small for

κ+
2K̄σ(σ + 4)

1− κ
< 1.

By step 1, there is a solution to equation (2.1) on [t0 − τ, t0 + σ]. Now consider
equation (2.1) on [t0 +σ, t0 + 2σ] with initial data xt0+σ. By step 1 again, there
is a solution to equation (2.1) on [t0 + σ, t0 + 2σ]. Repeating this procedure we
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see that there is a solution to equation (2.1) on the entire interval [t0 − τ, T ].
The proof is complete.

As in the theory of stochastic functional differential equations, we can re-
place the uniform Lipschitz condition (2.4) with the local Lipschitz condition.

Theorem 2.5 Let (2.5) and (2.6) hold, but replace condition (2.4) with the fol-
lowing local Lipschitz condition: For every integer n ≥ 1, there exists a positive
constant Kn such that, for all t ∈ [t0, T ] and those ϕ, φ ∈ C([−τ, 0];Rd) with
||ϕ|| ∨ ||φ|| ≤ n,

|f(ϕ, t)− f(φ, t)|2
∨
|g(ϕ, t)− g(φ, t)|2 ≤ Kn||ϕ− φ||2. (2.13)

Then there exists a unique solution x(t) to the initial-value problem (2.1) and
(2.3), and the solution belongs to M2([t0 − τ, T ];Rd).

This theorem can be proved by a truncation procedure but the details are
left to the reader.

In what follows we often discuss the neutral stochastic functional differential
equation on [t0,∞), namely

d[x(t)−D(xt)] = f(xt, t)dt+ g(xt, t)dB(t) on t ∈ [t0,∞) (2.14)

with initial data (2.3), where f and g are of course now the mappings from
C([−τ, 0];Rd) × [t0,∞) to Rd and Rd×m, respectively. If the assumptions of
the existence-and-uniqueness theorem hold on every finite subinterval [t0, T ] of
[t0,∞), then equation (2.14) has a unique solution x(t) on the entire interval
[t0 − τ,∞). Such a solution is called a global solution.

6.3 NEUTRAL STOCHASTIC DIFFERENTIAL DELAY
EQUATIONS

An important class of neutral stochastic functional differential equations
is the neutral stochastic differential delay equations. Let us begin with the
discussion of the following neutral delay equation

d[x(t)− D̃(x(t− τ))] = F (x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t) (3.1)

on t ∈ [t0, T ] with initial data (2.3), where F : Rd × Rd × [t0, T ] → Rd, G :
Rd ×Rd × [t0, T ] → Rd×m and D̃ : Rd → Rd. If we define

f(ϕ, t) = F (ϕ(0), ϕ(−τ), t), g(ϕ, t) = G(ϕ(0), ϕ(−τ), t)
and D(ϕ) = D̃(ϕ(−τ))

for ϕ ∈ C([−τ, 0];Rd) and t ∈ [t0, T ], then equation (3.1) can be written as
equation (2.1). Therefore, we can apply the existence-and-uniqueness theorems
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established in the previous section to the delay equation (3.1). For example,
let F and G satisfy the local Lipschitz condition (5.3.2) and the linear growth
condition (5.3.3); moreover, let D̃ be Lipschitz continuous with the Lipschitz
coefficient less than 1, that is there is a κ ∈ (0, 1) such that

|D̃(x)− D̃(y)| ≤ κ|x− y| for all x, y ∈ Rd, (3.2)

then there is a unique solution to the neutral delay equation (3.1). However, in
the same spirit as explained in Section 5.3, we can do considerably better.

Theorem 3.1 Assume that there is a K > 0 such that for all x, y ∈ Rd × Rd

and t ∈ [t0, T ],

|F (x, y, t)|2
∨
|G(x, y, t)|2

∨
|D̃(x)|2 ≤ K(1 + |x|2 + |y|2). (3.3)

Assume also that both F (x, y, t) and G(x, y, t) are locally Lipschitz continuous
in x only, that is, for every integer n ≥ 1, there exists a positive constant Kn

such that for all t ∈ [t0, T ], y ∈ Rd and x, x̄ ∈ Rd with |x| ∨ |x̄| ≤ n,

|F (x, y, t)− F (x̄, y, t)|2
∨
|G(x, y, t)−G(x̄, y, t)|2 ≤ Kn|x− x̄|2. (3.4)

Then there exists a unique solution to the delay equation (3.1).

Proof. On [t0, t0 + τ ], equation (3.1) becomes

x(t) = ξ(0) +D(ξ(t− t0 − τ))−D(ξ(−τ))

+
∫ t

t0

F (x(s), ξ(s− t0 − τ), s)ds+
∫ t

t0

G(x(s), ξ(s− t0 − τ), s)dB(s).

But this is a stochastic integral equation (not neutral and without delay), and
conditions (3.3)-(3.4) guarantee the existence and uniqueness of the solution on
[t0, t0 +τ ] (the reader can verify this in the same way as in the proof of Theorem
2.3.1). Proceeding this argument on [t0 + τ, t0 + 2τ ], [t0 + 2τ, t0 + 3τ ] etc., we
obtain the unique solution on the entire interval [t0 − τ, T ].

Let us proceed to discuss the equations in which the delay is time depen-
dent. Let δ : [t0, T ] → [0, τ ] be a Borel measurable function. Consider the
neutral stochastic differential delay equation

d[x(t)− D̃(x(t− δ(t)))]
= F (x(t), x(t− δ(t)), t)dt+G(x(t), x(t− δ(t)), t)dB(t) (3.5)

on t ∈ [t0, T ] with initial data (2.3). This is again a special case of equation
(2.1) if define

f(ϕ, t) = F (ϕ(0), ϕ(−δ(t)), t), g(ϕ, t) = G(ϕ(0), ϕ(−δ(t)), t)
and D(ϕ) = D̃(ϕ(−δ(t)))
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for ϕ ∈ C([−τ, 0];Rd) and t ∈ [t0, T ]. Hence, conditions (5.3.2), (5.3.3) and
(3.2) will guarantee the existence and uniqueness of the solution to this delay
equation. On the other hand, if the delay is really “true” in the sense that
supt0≤t≤T δ(t) > 0, then in the same way as in the proof of theorem 3.1 we can
show that conditions (3.3) and (3.4) will guarantee the existence and uniqueness
of the solution to equation (3.5). We summarize these results as a theorem.

Theorem 3.2 If conditions (5.3.2), (5.3.3) and (3.2) are fulfilled, then there
is a unique solution to equation (3.5). On the other hand, if the time lag δ(t)
is positive everywhere, that is supt0≤t≤T δ(t) > 0, then conditions (3.3) and
(3.4) are sufficient to guarantee the existence and uniqueness of the solution to
equation (3.5).

There is no difficulty to extend this result to a more general neutral stochas-
tic differential equation with several time-varying delays but the details are left
to the reader.

6.4 MOMENT AND PATHWISE ESTIMATES

In this section we shall establish the exponential estimates for the solution
of equation (2.14), namely

d[x(t)−D(xt)] = f(xt, t)dt+ g(xt, t)dB(t) on t ∈ [t0,∞) (4.1)

with initial data (2.3). Let x(t) be the unique global solution of the equation. To
give the exponential estimates, we need to impose the linear growth condition:
There is a constant K > 1 such that for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0, T ],

|f(ϕ, t)|2
∨
|g(ϕ, t)|2 ≤ K(1 + ||ϕ||2). (4.2)

In addition, we assume that there is a constant κ ∈ (0, 1) such that

|D(ϕ)| ≤ κ||ϕ|| (4.3)

for all ϕ ∈ C([−τ, 0];Rd). Note that (4.3) follows from (2.6) if in addition
D(0) = 0. It is much more technical to establish Lp-estimates for the solution of
the neutral stochastic functional differential equation than for the solution of a
stochastic functional differential equation. We need to prepare several lemmas.

Lemma 4.1 Let p > 1, ε > 0 and a, b ∈ R. Then

|a+ b|p ≤
[
1 + ε

1
p−1

]p−1
(
|a|p +

|b|p

ε

)
.
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Proof. By the Hölder’s inequality, we have that

|a+ b|p =
∣∣∣∣a+ ε

1
p
b

ε
1
p

∣∣∣∣p ≤ [
1 + ε

1
p−1

]p−1
(
|a|p +

|b|p

ε

)
as required.

Lemma 4.2 Let p ≥ 2 and ε, a, b > 0. Then

ap−1b ≤ (p− 1)εap

p
+

bp

pεp−1

and

ap−2b2 ≤ (p− 2)εap

p
+

2bp

pε(p−2)/2
.

Proof. Using the elementary inequality arb1−r ≤ ra+(1−r)b for any r ∈ [0, 1],
we derive that

ap−1b = (εap)
p−1

p

(
bp

εp−1

) 1
p

≤ (p− 1)εap

p
+

bp

pεp−1
,

which is the first inequality required. Using this inquality, we derive that

ap−2b2 = (a2)
p
2−1b2 ≤ (p− 2)εap

p
+

2bp

pε(p−2)/2
,

which is the second inequality required.

Lemma 4.3 Let p ≥ 1 and let (4.3) hold. Then

|ϕ(0)−D(ϕ)|p ≤ (1 + κ)p||ϕ||p

for all ϕ ∈ C([−τ, 0];Rn).

Proof. The required inequality follows from (4.3) directly when p = 1 so we
only need to show the lemma for p > 1. Let ε > 0 be arbitrary. By Lemma 4.1
and condition (4.3), one derives that

|ϕ(0)−D(ϕ)|p ≤
[
1 + ε

1
p−1

]p−1
(
|ϕ(0)|p +

|D(ϕ)|p

ε

)
≤

[
1 + ε

1
p−1

]p−1
(

1 +
κp

ε

)
||ϕ||p.

The required inequality now follows by letting ε = κp−1.

Lemma 4.4 Let p > 1 and (4.3) hold. Then

sup
t0≤s≤t

|x(s)|p ≤ κ

1− κ
||ξ||p +

1
(1− κ)p

sup
t0≤s≤t

|x(s)−D(xs)|p.
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Proof. For any ε > 0, by Lemma 4.1, we have that

|x(s)|p = |D(xs) + x(s)−D(xs)|p

≤
[
1 + ε

1
p−1

]p−1
(
|D(xs)|p

ε
+ |x(s)−D(xs)|p

)
≤

[
1 + ε

1
p−1

]p−1
(
κp||xs||p

ε
+ |x(s)−D(xs)|p

)
.

Letting ε =
[

κ
1−κ

]p−1 yields that

|x(s)|p ≤ κ||xs||p +
1

(1− κ)p−1
|x(s)−D(xs)|p.

Therefore

sup
t0≤s≤t

|x(s)|p ≤ κ sup
t0≤s≤t

||xs||p +
1

(1− κ)p−1
sup

t0≤s≤t
|x(s)−D(xs)|p

≤ κ||ξ||p + κ sup
t0≤s≤t

||x(s)||p +
1

(1− κ)p−1
sup

t0≤s≤t
|x(s)−D(xs)|p,

and the required assertion follows immediately.
We can now begin to establish the main results in this section.

Theorem 4.5 Let p ≥ 2 and E||ξ||p <∞. Let (4.2) and (4.3) hold. Then

E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤ (1 + C̄E||ξ||p)eC(t−t0), (4.4)

where

C =
2p(1 + κ)p−2

(1− κ)p

[√
2K(1 + κ) +K(33p− 1)

]
and

C̄ =
1

1− κ
+

2(1 + κ)p

(1− κ)p
.

Proof. By Itô’s formula, we can show that

|x(t)−D(xt)|p ≤ |ξ(0)−D(ξ)|p

+
∫ t

t0

[
p|x(s)−D(xs)|p−1|f(xs, s)|

+
p(p− 1)

2
|x(s)−D(xs)|p−2|g(xs, s)|2

]
ds

+ p

∫ t

t0

|x(s)−D(xs)|p−2(x(s)−D(xs))T g(xs, s)dB(s). (4.5)
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Applying Lemmas 4.2 and 4.3 along with condition (4.2), we easily see that for
any ε > 0,

|x(s)−D(xs)|p−1|f(xs, s)| ≤
(p− 1)ε(1 + κ)p

p
||xs||p +

K
p
2

pεp−1
(1 + ||xs||2)

p
2

≤
[
(p− 1)ε(1 + κ)p

p
+

(2K)
p
2

pεp−1

]
(1 + ||xs||p).

Letting ε =
√

2K/(1 + κ) yields that

|x(s)−D(xs)|p−1|f(xs, s)| ≤
√

2K(1 + κ)p−1(1 + ||xs||p).

Similarly, we can show that

|x(s)−D(xs)|p−2|g(xs, s)|2 ≤ 2K(1 + κ)p−2(1 + ||xs||p).

Also, by Lemma 4.3,

|ξ(0)−D(ξ)|p ≤ (1 + κ)p||ξ||p.

We therefore obtain from (4.5) that

E
(

sup
t0≤s≤t

|x(s)−D(xs)|p
)

≤ (1 + κ)pE||ξ||p + C1

∫ t

t0

(1 + E||xs||p)ds

+ pE

(
sup

t0≤s≤t

∣∣∣ ∫ s

t0

|x(r)−D(xr)|p−2(x(r)−D(xr))T g(xr, r)dB(r)
∣∣∣), (4.6)

where C1 = p
√

2K(1 + κ)p−1 + p(p− 1)K(1 + κ)p−2. On the other hand, by the
Burkholder–Davis–Gundy inequality (i.e. Theorem 1.7.3) and the assumptions,
we derive that

pE

(
sup

t0≤s≤t

∣∣∣ ∫ s

t0

|x(r)−D(xr)|p−2(x(r)−D(xr))T g(xr, r)dB(r)
∣∣∣)

≤ 4p
√

2E
(∫ t

t0

|x(s)−D(xs)|2p−2|g(xs, s)|2ds
) 1

2

≤ 4p
√

2E
{(

sup
t0≤s≤t

|x(s)−D(xs)|p
) ∫ t

t0

|x(s)−D(xs)|p−2|g(xs, s)|2ds
} 1

2

≤ 1
2
E

(
sup

t0≤s≤t
|x(s)−D(xs)|p

)
+ 16p2E

∫ t

t0

|x(s)−D(xs)|p−2|g(xs, s)|2ds

≤ 1
2
E

(
sup

t0≤s≤t
|x(s)−D(xs)|p

)
+ 32Kp2(1 + κ)p−2

∫ t

t0

(1 + E||xs||p)ds. (4.7)
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Substituting this into (4.6) yields that

E
(

sup
t0≤s≤t

|x(s)−D(xs)|p
)
≤ 2(1 + κ)pE||ξ||p + C2

∫ t

t0

(1 + E||xs||p)ds, (4.8)

where C2 = 2C1 + 64Kp2(1 + κ)p−2. Applying Lemma 4.4 we then see that

E
(

sup
t0≤s≤t

|x(s)|p
)
≤ C3E||ξ||p +

C2

(1− κ)p

∫ t

t0

(1 + E||xs||p)ds,

where C3 = κ/(1− κ) + 2(1 + κ)p/(1− κ)p. Consequently

1 + E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤ 1 + E||ξ||p + E

(
sup

t0≤s≤t
|x(s)|p

)
≤ 1 + (1 + C3)E||ξ||p +

C2

(1− κ)p

∫ t

t0

[
1 + E

(
sup

t0−τ≤r≤s
|x(r)|p

)]
ds.

Finally, by the Gronwall inequality, we obtain that

1 + E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤

[
1 + (1 + C3)E||ξ||p

]
exp

[
C2(t− t0)
(1− κ)p

]
and the required assertion (4.4) follows since C = C2/(1− κ)p and C̄ = 1 +C3.
The proof is complete.

In the above proof, we have made several enlargements when use the linear
growth condition (4.2) to estimate some terms. To obtain a more precise result,
we can pool these terms together and estimate them as a whole.

Theorem 4.6 Let p ≥ 2 and E||ξ||p < ∞. Let (4.3) hold. Assume that there
is a constant λ > 0 such that

2p|ϕ(0)−D(ϕ)|p−1|f(ϕ, t)|+ p(33p− 1)|ϕ(0)−D(ϕ)|p−2|g(ϕ, t)|2

≤ λ(1 + ||ϕ||p) (4.9)

for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0,∞). Then

E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤ (1 + C̄E||ξ||p) exp

[
λ(t− t0)
(1− κ)p

]
, (4.10)

where C̄ is the same as defined in Theorem 4.5.

Proof. It is not difficult to derive from (4.5), (4.7) and condition (4.9) that

E
(

sup
t0≤s≤t

|x(s)−D(xs)|p
)
≤ 2(1 + κ)pE||ξ||p

+ E

∫ t

t0

[
2p|x(s)−D(xs)|p−1|f(xs, s)|

+ p(33p− 1)|x(s)−D(xs)|p−2|g(xs, s)|2
]
ds

≤ 2(1 + κ)pE||ξ||p + λ

∫ t

t0

(1 + E||xs||p)ds, (4.11)
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which is similar to (4.8). From here, it is the same as in the proof of Theorem
4.5 to show that

1 + E
(

sup
t0−τ≤s≤t

|x(s)|p
)
≤

[
1 + C̄E||ξ||p

]
exp

[
λ(t− t0)
(1− κ)p

]
,

and the desired assertion (4.10) follows.
From the conclusion of Theorem 4.6 we can obtain the pathwise asymptotic

estimate for the solution.

Theorem 4.7 Let (4.3) hold. Assume that there is a constant λ > 0 such that

4|ϕ(0)−D(ϕ)||f(ϕ, t)|+ 130|g(ϕ, t)|2 ≤ λ(1 + ||ϕ||2) (4.12)

for all (ϕ, t) ∈ C([−τ, 0];Rd)× [t0,∞). Then

lim sup
t→∞

1
t

log |x(s)| ≤ λ

2(1− κ)2
a.s.

The proof is the same as that of Theorem 5.4.2 by using the result of
Theorem 4.6 with p = 2.

We now apply this theorem to obtain the pathwise asymptotic estimate for
the solution under conditions (4.2) and (4.3).

Corollary 4.8 Let (4.2) and (4.3) hold. Then

lim sup
t→∞

1
t

log |x(s)| ≤ 1
(1− κ)2

[
2
√
K(1 + κ) + 65K

]
a.s. (4.13)

Proof. By conditions (4.2) and (4.3) we estimate that

4|ϕ(0)−D(ϕ)||f(ϕ, t)|+ 130|g(ϕ, t)|2

≤ 4(1 + κ)||ϕ||
√
K(1 + ||ϕ||2) + 130K(1 + ||ϕ||2)

≤
[
4
√
K(1 + κ) + 130K

]
(1 + ||ϕ||2).

Hence the conclusion follows from Theorem 4.7.
To close this section, let us point out that if we apply Theorem 4.5 we can

only obtain that

lim sup
t→∞

1
t

log |x(s)| ≤ 1
(1− κ)2

[
2
√

2K(1 + κ) + 130K
]

a.s.

which is worse than (4.13), and this shows the advantage of Theorem 4.6.
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6.5 Lp-CONTINUITY

Let us proceed to discuss the Lp-continuity of the solution x(t) of equation
(4.1). Bearing in mind that almost all sample paths of the solution are contin-
uous, we can easily conclude from Theorem 4.5 that the solution is continuous
in Lp by applying the dominated convergence theorem (i.e. Theorem 1.2.2). On
the other hand, with a little more effort, we can more precisely estimate the
Lp-difference between x(t + δ) and x(t). Let E||ξ||p < ∞. Since all the sam-
ple paths of ξ(·) are continuous on [−τ, 0], the dominated convergence theorem
implies that ξ(·) is Lp-continuous, hence uniformly Lp-continuous on [−τ, 0].
Therefore, for any 0 < δ < τ , there is a βδ > 0 such that

E|ξ(θ1)− x(θ2)|p ≤ βδ if θ1, θ2 ∈ [−τ, 0] and |θ1 − θ2| ≤ δ. (5.1)

Moreover, we introduce a new notation Lp
F ([−τ, 0];Rd) which denotes the family

of all C([−τ, 0];Rd)-valued F-measurable random variables φ such that E||φ||p <
∞.

Theorem 5.1 Let p ≥ 2 and E||ξ||p < ∞. Let (4.2) hold. Assume that
D(0) = 0 and, moreover, there is a constant κ ∈ (0, 1) such that

E|D(φ)−D(ψ)|p ≤ κp sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|p (5.2)

for all φ, ψ ∈ Lp
F ([−τ, 0];Rd). Then for any T > t0 and 0 < δ < τ ,

E|x(t+ δ)− x(t)|p ≤ κ

1− κ
(1 + 2p−1)βδ +

H2δ
p
2

(1− κ)p

+
κ2p−1

(1− κ)(1−
√
κ)

(
κH4βδ +

H3δ
p
2

(1− κ)p−1

)
, (5.3)

whenever t0 ≤ t ≤ T , where βδ has been defined above, H2–H4 are constants
dependent of K,κ, p, τ, T, ξ only and will be defined in the proof below.

Proof. First, let us show that condition (4.3) is fulfilled. Since C([−τ, 0];Rd)
∈ Lp

F ([−τ, 0];Rd), we see from the fact D(0) = 0 and condition (5.2) that for
any ϕ ∈ C([−τ, 0];Rd),

|D(ϕ)|p = E|D(ϕ)|p = E|D(ϕ)−D(0)|p ≤ kpE||ϕ||p = kp||ϕ||p,

and (4.3) follows. Therefore, by Theorem 4.5, we have that

E
(

sup
t0−τ≤s≤T+τ

|x(s)|p
)
≤ H1 := (1 + C̄E||ξ||p)eC(T+τ−t0), (5.4)
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where C and C̄ are defined in Theorem 4.5. In the same way as in the proof of
Theorem 5.4.3, we derive that for t0 ≤ t ≤ T ,

E|x(t+ δ)−D(xt+δ)− x(t) +D(xt)|p

≤ (2δ)p−1E

∫ t+δ

t

|f(xs, s)|pds+
1
2
[2p(p− 1)]

p
2 δ

p−2
2 E

∫ t+δ

t

|g(xs, s)|pds

≤
[
(2δ)p−1 +

1
2
[2p(p− 1)]

p
2 δ

p−2
2

]
2

p−2
2 K

p
2 (1 +H1)δ ≤ H2δ

p
2 , (5.5)

where
H2 = 2

p−2
2 K

p
2 (1 +H1)

[
2p−1τ

p
2 +

1
2
[2p(p− 1)]

p
2

]
.

On the other hand, by Lemma 4.1 and condition (5.2), we can derive that for
any ε > 0,

E|x(t+ δ)− x(t)|p

= E|D(xt+δ)−D(xt) + x(t+ δ)−D(xt+δ)− x(t) +D(xt)|p

≤
[
1 + ε

1
p−1

]p−1
(

1
ε
E|D(xt+δ)−D(xt)|p

+ E|x(t+ δ)−D(xt+δ)− x(t) +D(xt)|p
)

≤
[
1 + ε

1
p−1

]p−1
(
κp

ε
sup

−τ≤θ≤0
E|x(t+ δ + θ)− x(t+ θ)|p

+ E|x(t+ δ)−D(xt+δ)− x(t) +D(xt)|p
)
.

Letting ε =
[

κ
1−κ

]p−1 and using (5.5) we see that

E|x(t+ δ)− x(t)|p ≤ κ sup
−τ≤θ≤0

E|x(t+ δ + θ)− x(t+ θ)|p +
H2δ

p
2

(1− κ)p−1

holds for all t0 ≤ t ≤ T . Consequently,

sup
t0≤t≤T

E|x(t+ δ)− x(t)|p

≤ κ sup
t0−τ≤t≤T

E|x(t+ δ)− x(t)|p +
H2δ

p
2

(1− κ)p−1

≤ κ sup
t0≤t≤T

E|x(t+ δ)− x(t)|p

+ κ sup
t0−τ≤t≤t0

E|x(t+ δ)− x(t)|p +
H2δ

p
2

(1− κ)p−1
.

This implies that

sup
t0≤t≤T

E|x(t+ δ)− x(t)|p

≤ κ

1− κ
sup

t0−τ≤t≤t0

E|x(t+ δ)− x(t)|p +
H2δ

p
2

(1− κ)p
. (5.6)
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But, by (5.1), we derive that

sup
t0−τ≤t≤t0

E|x(t+ δ)− x(t)|p

≤ βδ + sup
t0−δ≤t≤t0

E|x(t+ δ)− x(t)|p

≤ βδ + 2p−1 sup
t0−δ≤t≤t0

[
E|x(t0)− x(t)|p + E|x(t+ δ)− x(t0)|p

]
≤ (1 + 2p−1)βδ + 2p−1 sup

t0≤t≤t0+δ
E|x(t)− ξ(0)|p.

Substituting this into (5.6) yields that

sup
t0≤t≤T

E|x(t+ δ)− x(t)|p ≤ κ

1− κ
(1 + 2p−1)βδ +

H2δ
p
2

(1− κ)p

+
κ2p−1

1− κ
sup

t0≤t≤t0+δ
E|x(t)− ξ(0)|p. (5.7)

The assertion of the theorem follows now from the following lemma.

Lemma 5.2 Under the same assumptions of Theorem 5.1,

sup
t0≤t≤t0+δ

E|x(t)− ξ(0)|p ≤ 1
1−

√
κ

(
κH4βδ +

H3δ
p
2

(1− κ)p−1

)
, (5.8)

where H3 and H4 are constants dependent of K,κ, p, τ, ξ only and will be defined
in the proof below.

Proof. In the same way as in the above proof, we can show that for t0 ≤ t ≤
t0 + δ,

E|x(t)−D(xt)− ξ(0) +D(ξ)|p ≤ H3δ
p
2

and

E|x(t)− ξ(0)|p ≤ κ sup
−τ≤θ≤0

E|x(t+ θ)− x(θ)|p

+
1

(1− κ)p−1
E|x(t)−D(xt)− ξ(0) +D(ξ)|p,

where

H3 = 2
p−2
2 K

p
2

[
1 + (1 + C̄E||ξ||p)eCτ

][
2p−1τ

p
2 +

1
2
[2p(p− 1)]

p
2

]
,

C and C̄ are defined in Theorem 4.5. Thus

E|x(t)− ξ(0)|p ≤ κ sup
−τ≤θ≤0

E|x(t+ θ)− ξ(θ)|p +
H3δ

p
2

(1− κ)p−1
. (5.9)
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On the other hand, by (5.1), we can derive that

sup
−τ≤θ≤0

E|x(t+ θ)− ξ(θ)|p

≤ sup
−τ≤θ≤−(t−t0)

E|ξ(t− t0 + θ)− ξ(θ)|p + sup
−(t−t0)≤θ≤0

E|x(t+ θ)− ξ(θ)|p

≤ βδ + sup
−(t−t0)≤θ≤0

E|x(t+ θ)− ξ(0) + ξ(0)− ξ(θ)|p. (5.10)

But, using Lemma 4.1, we can show that

sup
−(t−t0)≤θ≤0

E|x(t+ θ)− ξ(0) + ξ(0)− ξ(θ)|p

≤ sup
−(t−t0)≤θ≤0

(
1√
κ
E|x(t+ θ)− ξ(0)|p +

1[
1− κ1/2(p−1)

]p−1E|ξ(0)− ξ(θ)|p
)

≤ 1√
κ

sup
t0≤s≤t0+δ

E|x(s)− ξ(0)|p +
βδ[

1− κ1/2(p−1)
]p−1 .

Substituting this into (5.10) gives

sup
−τ≤θ≤0

E|x(t+ θ)− ξ(θ)|p

≤ H4βδ +
1√
κ

sup
t0≤s≤t0+δ

E|x(s)− ξ(0)|p,

where H4 = 1 +
[
1− κ1/2(p−1)

]−(p−1). Putting this into (5.9) yields

E|x(t)− ξ(0)|p ≤
√
κ sup

t0≤s≤t0+δ
E|x(s)− ξ(0)|p

+κH4βδ +
H3δ

p
2

(1− κ)p−1
,

Since this holds for all t0 ≤ t ≤ t0 + δ, we must have

sup
t0≤t≤t0+δ

E|x(t)− ξ(0)|p ≤
√
κ sup

t0≤s≤t0+δ
E|x(s)− ξ(0)|p

+κH4βδ +
H3δ

p
2

(1− κ)p−1
,

and the required assertion (5.3) follows. The proof is now complete.
To close this section let us point out that although condition (5.2) is stronger

than the Lipschitz condition (2.6), it is satisfied in many important cases. For
example, if D(ϕ) = D̃(ϕ(−τ)) for ϕ ∈ C([−τ, 0];Rd) as in Section 3 and condi-
tion (3.2) is satisfied, then

E|D(φ)−D(ψ)|p ≤ κpE|φ(−τ)− ψ(−τ)|p ≤ κp sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|p
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for φ, ψ ∈ Lp
F ([−τ, 0];Rd). Also, if D is defined by

D(ϕ) =
1
τ

∫ 0

−τ

Ψ(ϕ(θ))dθ,

where Ψ : Rd → Rd satisfying |Ψ(x)−Ψ(y)| ≤ κ|x− y| with κ ∈ (0, 1). Then

E|D(φ)−D(ψ)|p ≤ 1
τp
E

∣∣∣∫ 0

−τ

[
Ψ(φ(θ))−Ψ(ψ(θ))

]
dθ

∣∣∣p
≤ 1
τ
E

∫ 0

−τ

|Ψ(φ(θ))−Ψ(ψ(θ))|pdθ ≤ κp

τ

∫ 0

−τ

E|φ(θ)− ψ(θ)|pdθ

≤ κp sup
−τ≤θ≤0

E|φ(θ)− ψ(θ)|p.

6.6 EXPONENTIAL STABILITY

In this section we shall study the stability problem for the neutral stochastic
functional differential equation

d[x(t)−D(xt)] = f(xt, t)dt+ g(xt, t)dB(t) on t ≥ t0. (6.1)

For this purpose, we assume that f, g andD are smooth enough (e.g. continuous)
so that the equation has a unique global solution for any given initial data
xt0 = ξ ∈ L2

Ft0
([−τ, 0];Rd), and the solution is denoted by x(t; ξ). We have

already shown that almost all the sample paths of the solution are continuous
and, moreover, the 2nd moment of the solution is continuous. We furthermore
assume that f(0, t) ≡ 0, g(0, t) ≡ 0 and D(0) = 0. Therefore, the equation
admits a trivial solution x(t; 0) ≡ 0 corresponding to the initial data xt0 = 0.
Due to the page limit we shall only discuss the mean square and almost sure
exponential stability of the trivial solution. The main technique used in this
section is the Razumikhin argument (cf. Section 5.6). Let us first establish a
result on the exponential stability in mean square.

Theorem 6.1 Assume that there is a constant κ ∈ (0, 1) such that

E|D(φ)|2 ≤ κ2 sup
−τ≤θ≤0

E|φ(θ)|2, φ ∈ L2
F ([−τ, 0];Rd). (6.2)

Let q > (1− κ)−2. Assume furthermore that there is a λ > 0 such that

E
[
2(φ(0)−D(φ))T f(φ, t) + |g(φ, t)|2

]
≤ −λE|φ(0)−D(φ)|2 (6.3)

for all t ≥ t0 and those φ ∈ L2
Ft

([−τ, 0];Rd) satisfying

E|φ(θ)|2 < qE|φ(0)−D(φ)|2, −τ ≤ θ ≤ 0.
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Then for all ξ ∈ L2
Ft0

([−τ, 0];Rd),

E|x(t; ξ)|2 ≤ q(1 + κ)2e−γ̄(t−t0) sup
−τ≤θ≤0

E|ξ(θ)|2 on t ≥ t0 (6.4)

where

γ̄ = min
{
λ,

1
τ

log
[

q

(1 + κ
√
q)2

]}
> 0. (6.5)

In other words, the trivial solution of equation (6.1) is exponentially stable in
mean square.

In order to prove this theorem, let us present two useful lemmas.

Lemma 6.2 Let (6.2) hold for some κ ∈ (0, 1). Then

E|φ(0)−D(φ)|2 ≤ (1 + κ)2 sup
−τ≤θ≤0

E|φ(θ)|2

for all φ ∈ L2
F ([−τ, 0];Rd).

Proof. Compute that

E|φ(0)−D(φ)|2 ≤ E|φ(0)|2 + 2E
(
|φ(0)||D(φ)|

)
+ E|D(φ)|2

≤ (1 + κ)E|φ(0)|2 + (1 + κ−1)E|D(φ)|2

≤
[
1 + κ+ κ(1 + κ)

]
sup

−τ≤θ≤0
E|φ(θ)|2

= (1 + κ)2 sup
−τ≤θ≤0

E|φ(θ)|2

as required.

Lemma 6.3 Let (6.2) hold for some κ ∈ (0, 1). Let ρ ≥ t0 and 0 < γ <
τ−1 log(1/κ2). Let x(t) be a solution of equation (6.1). If

eγ(t−t0)E|x(t)−D(xt)|2 ≤ (1 + κ)2 sup
−τ≤θ≤0

E|x(t0 + θ)|2 (6.6)

for all t0 ≤ t ≤ ρ, then

eγ(t−t0)E|x(t)|2 ≤ (1 + κ)2

(1− κeγτ/2)2
sup

−τ≤θ≤0
E|x(t0 + θ)|2

for all t0 − τ ≤ t ≤ ρ.

Proof. Let κ2eγτ < ε < 1. For t0 ≤ t ≤ ρ, note that

E|x(t)−D(xt)|2 ≥ E|x(t)|2 − 2E
(
|x(t)||D(xt)|

)
+ E|D(xt)|2

≥ (1− ε)E|x(t)|2 − (ε−1 − 1)E|D(xt)|2.
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Hence

E|x(t)|2 ≤ 1
1− ε

E|x(t)−D(xt)|2 +
κ2

ε
sup

−τ≤θ≤0
E|x(t+ θ)|2.

By condition (6.6), we then derive that for all t0 ≤ t ≤ ρ,

eγ(t−t0)E|x(t)|2 ≤ 1
1− ε

sup
t0≤t≤ρ

[
eγ(t−t0)E|x(t)−D(xt)|2

]
+
κ2

ε
sup

t0≤t≤ρ

[
eγ(t−t0) sup

−τ≤θ≤0
E|x(t+ θ)|2

]
≤ (1 + κ)2

1− ε
sup

−τ≤θ≤0
E|x(t0 + θ)|2

+
κ2eγτ

ε
sup

t0−τ≤t≤ρ

[
eγ(t−t0)E|x(t)|2

]
.

However, this holds for all t0 − τ ≤ t ≤ t0 as well. Therefore

sup
t0−τ≤t≤ρ

[
eγ(t−t0)E|x(t)|2

]
≤ (1 + κ)2

1− ε
sup

−τ≤θ≤0
E|x(t0 + θ)|2 +

κ2eγτ

ε
sup

t0−τ≤t≤ρ

[
eγ(t−t0)E|x(t)|2

]
.

Since 1 > κ2eγτ/ε, we obtain that

sup
t0−τ≤t≤ρ

[
eγ(t−t0)E|x(t)|2

]
≤ ε(1 + κ)2

(1− ε)(ε− κ2eγτ )
sup

−τ≤θ≤0
E|x(t0 + θ)|2.

Finally, the required assertion follows by taking ε = κeγτ/2.
We can now begin to prove theorem 6.1.

Proof of Theorem 6.1. First, note that q/(1+κ
√
q)2 > 1 since q > (1−κ)−2, and

hence γ̄ > 0. Now fix any ξ ∈ L2
Ft0

([−τ, 0];Rd) and simply write x(t; ξ) = x(t).
Without any loss of generality we may assume that sup−τ≤θ≤0E|ξ(θ)|2 > 0. Let
γ ∈ (0, γ̄) arbitrarily. It is easy to show that

0 < γ < min
{
λ,

1
τ

log
( 1
κ2

)}
and q >

eγτ

(1− κeγτ/2)2
. (6.7)

We now claim that

eγ(t−t0)E|x(t)−D(xt)|2 ≤ (1 + κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2 for all t ≥ t0. (6.8)
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If so, an application of Lemma 6.3 to (6.8) yields that

eγ(t−t0)E|x(t)|2 ≤ (1 + κ)2

(1− κeγτ/2)2
sup

−τ≤θ≤0
E|ξ(θ)|2

≤ q(1 + κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2

for all t ≥ t0, where (6.7) has been used, and then the desired result (6.4) follows
by letting γ → γ̄. The remainder of the proof is to show (6.8) by contradiction.
Suppose (6.8) is not true. Then in view of Lemma 6.2, there is a ρ ≥ 0 such that

eγ(t−t0)E|x(t)−D(xt)|2 ≤ eγ(ρ−t0)E|x(ρ)−D(xρ)|2

= (1 + κ)2 sup
−τ≤θ≤0

E|ξ(θ)|2 (6.9)

for all t0 ≤ t ≤ ρ and, moreover, there is a sequence of {tk}k≥1 such that tk ↓ ρ
and

eγ(tk−t0)E|x(tk)−D(xtk
)|2 > eγ(ρ−t0)E|x(ρ)−D(xρ)|2. (6.10)

Applying Lemma 6.3, we derive from (6.9) that

eγ(t−t0)E|x(t)|2 ≤ (1 + κ)2

(1− κeγτ/2)2
sup

−τ≤θ≤0
E|ξ(θ)|2

=
eγ(ρ−t0)

(1− κeγτ/2)2
E|x(ρ)−D(xρ)|2

for all −τ ≤ t ≤ ρ. Particularly,

E|x(ρ+ θ)|2 ≤ eγτ

(1− κeγτ/2)2
E|x(ρ)−D(xρ)|2

< qE|x(ρ)−D(xρ)|2 (6.11)

for all −τ ≤ θ ≤ 0, where (6.7) has been used once again. By assumption (6.3),
we then have

E
(
2(x(ρ)−D(xρ))T f(xρ, ρ) + |g(xρ, ρ)|2

)
≤ −λE|x(ρ)−D(xρ)|2.

Recalling γ < λ, we see by the continuity of the solution and the functionals
D, f and g (this is the standing hypothesis in this section) that for all sufficiently
small h > 0,

E
(
2(x(t)−D(xt))T f(xt, t) + |g(xt, t)|2

)
≤ −γE|x(t)−D(xt)|2

if ρ ≤ t ≤ ρ + h. Now by the Itô formula, for all sufficiently small h > 0, we
have that

eγ(ρ+h−t0)E|x(ρ+ h)−D(xρ+h)|2 − eγ(ρ−t0)E|x(ρ)−D(xρ)|2

=
∫ ρ+h

ρ

eγ(t−t0)

[
γE|x(t)−D(xt)|2

+E
(
2(x(t)−D(xt))T f(xt, t) + |g(t, xt)|2

)]
dt

≤ 0,
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but this contradicts with (6.10), so (6.8) must hold. The proof is now complete.
We now turn to discuss the almost sure exponential stability. We need

to prepare another lemma which is very useful in the study of the almost sure
exponential stability of neutral stochastic functional differential equations.

Lemma 6.4 Assume that there exists a constant κ ∈ (0, 1) such that

|D(ϕ)| ≤ κ sup
−τ≤θ≤0

|ϕ(θ)|, ϕ ∈ C([−τ, 0];Rd). (6.12)

Let z : [t0 − τ,∞) → Rd be a continuous function and define zt = {z(t + θ) :
−τ ≤ θ ≤ 0} for t ≥ t0. Let 0 < γ < τ−1 log(1/κ2) and H > 0. If

|z(t)−D(zt)|2 ≤ He−γ(t−t0) for all t ≥ t0,

then
lim sup

t→∞

1
t

log |z(t)| ≤ −γ
2
.

Proof. Choose any ε ∈ (κ2eγτ , 1). In the same way as in the proof of Lemma
6.3, we can show that for any T > t0,

sup
t0≤t≤T

[
eγ(t−t0)|z(t)|2

]
≤ H

1− ε
+
κ2eγτ

ε
sup

t0−τ≤t≤T

[
eγ(t−t0)|z(t)|2

]
.

It then follows(
1− κ2eγτ

ε

)
sup

t0≤t≤T

[
eγ(t−t0)|z(t)|2

]
≤ H

1− ε
+
κ2eγτ

ε
sup

t0−τ≤t≤t0

|z(t)|2.

This implies immediately that

lim sup
t→∞

1
t

log |z(t)| ≤ −γ
2

as required.

Theorem 6.5 Let (6.2) hold for some κ ∈ (0, 1). Assume that there exists a
positive constant K > 0 such that

E
(
|f(φ, t)|2 + |g(φ, t)|2

)
≤ K sup

−τ≤θ≤0
E|φ(θ)|2 (6.13)

for all t ≥ t0 and φ ∈ L2
F ([−τ, 0];Rd). Assume also that the trivial solution of

equation (6.1) is exponentially stable in mean square, that is there exists a pair
of positive constants γ and M such that

E|x(t; ξ)|2 ≤Me−γ(t−t0) sup
−τ≤θ≤0

E|ξ(θ)|2 on t ≥ t0 (6.14)
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for all ξ ∈ L2
Ft0

([−τ, 0];Rd). Then

lim sup
t→∞

1
t

log |x(t; ξ)| ≤ − γ̄
2

a.s. (6.15)

where γ̄ = min{γ, τ−1 log(1/κ2)}, that is, the trivial solution of equation (6.1) is
also almost surely exponentially stable. In particular, if (6.2), (6.3) and (6.12)
hold, then the trivial solution of equation (6.1) is almost surely exponentially
stable.

Proof. Fix any initial data ξ and write the solution x(t; ξ) = x(t) simply.
By the well-known Doob martingale inequality, the Hölder inequality and the
assumptions, we can derive that for any integer k ≥ 1,

E
(

sup
0≤θ≤τ

|x(t0 + kτ + θ)−D(xt0+kτ+θ)|2
)

≤ 3E|x(t0 + kτ)−D(xt0+kτ )|2

+ 3K(τ + 4)
∫ t0+(k+1)τ

t0+kτ

(
sup

−τ≤θ≤0
E|x(s+ θ)|2

)
ds

≤ 6E|x(t0 + kτ)|2 + 6κ2 sup
−τ≤θ≤0

E|x(t0 + kτ + θ)|2

+ 3KM(τ + 4)
(

sup
−τ≤θ≤0

E|ξ(θ)|2
) ∫ t0+(k+1)τ

t0+kτ

e−γ̄(s−τ−t0)ds

≤ 3M
[
2(1 + κ2) +Kτ(τ + 4)

]
e−γ̄(kτ−τ)

(
sup

−τ≤θ≤0
E|ξ(θ)|2

)
= Ce−γ̄kτ , (6.16)

where C = 3Meγ̄τ
[
2(1 + κ2) +Kτ(τ + 4)

]
sup−τ≤θ≤0E|ξ(θ)|2. Let ε ∈ (0, γ̄) be

arbitrary. It then follows from (6.16) that

P

(
ω : sup

0≤θ≤τ
|x(t0 + kτ + θ)−D(xt0+kτ+θ)|2 > e−(γ̄−ε)kτ

)
≤ Ce−εkτ .

In view of the well-known Borel–Cantelli lemma, we see that for almost all ω ∈ Ω,

sup
0≤θ≤τ

|x(t0 + kτ + θ)−D(xt0+kτ+θ)|2 ≤ e−(γ̄−ε)kτ (6.17)

holds for all but finitely many k. Hence for all ω ∈ Ω excluding a P -null set,
there exists a k0(ω) for which (6.17) holds whenever k ≥ k0. In other words, for
almost all ω ∈ Ω,

|x(t)−D(xt)|2 ≤ e−(γ̄−ε)(t−τ−t0) if t ≥ t0 + k0τ.

However, |x(t) − D(xt)|2 is finite on [t0, t0 + k0τ ]. Therefore, for almost all
ω ∈ Ω, there exists a finite number H = H(ω) such that

|x(t)−D(xt)|2 ≤ He−(γ̄−ε)(t−t0) for all t ≥ t0.



Sec.6.6] Exponential Stability 227

Since C[−τ ; 0];Rd) ⊂ L2
F ([−τ, 0];Rd), we see that condition (6.2) implies condi-

tion (6.12). An application of Lemma 6.4 now yields

lim sup
t→∞

1
t

log |x(t)| ≤ − γ̄ − ε

2
a.s.

and the desired result (6.15) follows by letting ε→ 0. The proof is complete.
Let us now apply the above results to deal with special stochastic equations

of neutral type.

(i) Stochastically Perturbed Equations of Neutral Type

Consider the neutral stochastic equation of the form

d[x(t)−D(xt)] = [f1(x(t), t) + f2(xt, t)]dt+ g(xt, t)dB(t) (6.18)

on t ≥ t0 with initial data x0 = ξ ∈ L2
Ft0

([−τ, 0];Rd), where D, g are the same
as before, f1 : Rd×R+ → Rd and f2 : C([−τ, 0];Rd)×R+ → Rd are sufficiently
smooth and, moreover, f1(0, t) = f2(0, t) ≡ 0. This equation can be regarded as
the stochastically perturbed system of the neutral ordinary functional differential
equation

d

dt
[x(t)−D(xt)] = f1(x(t), t).

Corollary 6.6 Let (6.2) hold. Assume that there are two positive constants λ1

and λ2 such that

E
(
2(φ(0)−D(φ))T [f1(φ(0), t) + f2(φ, t)] + |g(φ, t)|2

)
≤ −λ1E|φ(0)|2 + λ2 sup

−τ≤θ≤0
E|φ(θ)|2 (6.19)

for all t ≥ t0 and φ ∈ L2
F ([−τ, 0];Rd). If

0 < κ <
1
2

and λ1 >
λ2

(1− 2κ)2
, (6.20)

then the trivial solution of equation (6.18) is exponentially stable in mean square.
If, in addition, there is a constant K > 0 such that

E
(
|f1(φ(0), t) + f2(φ, t)|2 + |g(φ, t)|2

)
≤ K sup

−τ≤θ≤0
E|φ(θ)|2 (6.21)

for all t ≥ t0 and φ ∈ L2
F ([−τ, 0];Rd), then the trivial solution of equation (6.18)

is also almost surely exponentially stable.

Proof. By condition (6.20), we can choose q such that

1
κ2

> q >
1

(1− κ)2
and λ1 >

λ2q

(1− κ
√
q)2

. (6.22)
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By defining f(ϕ, t) = f1(ϕ(0), t) + f2(ϕ, t) for t ≥ t0 and ϕ ∈ C([−τ, 0];Rd),
equation (6.18) can be written as equation (6.1), so all that we need to do is
verify condition (6.3). To do so, let t ≥ t0 and φ ∈ L2

Ft
([−τ, 0];Rd), satisfying

E|φ(θ)|2 < qE|φ(0)−D(φ)|2, −τ ≤ θ ≤ 0. (6.23)

Note that for any ε > 0,

E|φ(0)−D(φ)|2 ≤ (1 + ε)E|φ(0)|2 + (1 + ε−1)E|D(φ)|2.

Hence, using (6.2) and (6.23),

−E|φ(0)|2 ≤ − 1
1 + ε

E|φ(0)−D(φ)|2 +
1
ε
E|D(φ)|2

≤ − 1
1 + ε

E|φ(0)−D(φ)|2 +
κ2

ε
sup

−τ≤θ≤0
E|φ(θ)|2

≤ −
( 1

1 + ε
− κ2q

ε

)
E|φ(0)−D(φ)|2. (6.24)

It therefore follows from (6.19), (6.23) and (6.24) that

E
(
2(φ(0)−D(φ))T [f1(t, φ(0)) + f2(φ, t)] + |g(t, φ)|2

)
≤ −λ1

( 1
1 + ε

− κ2q

ε

)
E|φ(0)−D(φ)|2 + λ2qE|φ(0)−D(φ)|2

= −
[
λ1

( 1
1 + ε

− κ2q

ε

)
− λ2q

]
E|φ(0)−D(φ)|2. (6.25)

In particular, choose ε = κ
√
q/(1− κ

√
q) and hence[

λ1

( 1
1 + ε

− κ2q

ε

)
− λ2q

]
= λ1(1− κ

√
q)2 − λ2q > 0,

where (6.22) has been used. In other words, condition (6.3) is satisfied and hence
the conclusions follow from Theorems 6.1 and 6.5. The proof is complete.

To state another result, let us introduce a new notation W([−τ, 0];R+)
which is the family of all Borel measurable bounded nonnegative functions
η(θ) defined on −τ ≤ θ ≤ 0 such that

∫ 0

−τ
η(θ)dθ = 1. The functions in

W([−τ, 0];R+) are sometimes called weighting functions.

Corollary 6.7 Assume that there is a positive constant κ and a function η1 ∈
W([−τ, 0];R+) such that

|D(ϕ)|2 ≤ κ2

∫ 0

−τ

η1(θ)|ϕ(θ)|2dθ for all ϕ ∈ C([−τ, 0];Rd). (6.26)
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Assume also that there exists a function η2(.) ∈ W([−τ, 0];R+) and two positive
constants λ1 and λ2 such that

2(ϕ(0)−D(ϕ))T [f1(t, ϕ(0)) + f2(t, ϕ)] + |g(t, ϕ)|2

≤ −λ1|ϕ(0)|2 + λ2

∫ 0

−τ

η2(θ)|ϕ(θ)|2dθ (6.27)

for all t ≥ t0 and ϕ ∈ C([−τ, 0];Rd). If (6.20)∗ is satisfied, then the trivial
solution of equation (6.18) is exponentially stable in mean square. If, in addition,
(6.21) is satisfied as well, then the trivial solution of equation (6.18) is also
almost surely exponentially stable.

Proof. The conclusions follow from Corollary 6.6 provided we can verify that
(6.26) and (6.27) imply (6.2) and (6.19), respectively. If (6.26) holds, then for
any φ ∈ L2

F ([−τ, 0];Rd),

E|D(φ)|2 ≤ κ2

∫ 0

−τ

η1(θ)E|φ(θ)|2dθ

≤ κ2 sup
−τ≤θ≤0

E|φ(θ)|2
∫ 0

−τ

η1(θ)dθ = κ2 sup
−τ≤θ≤0

E|φ(θ)|2,

that is (6.2) holds. Similarly,

E

∫ 0

−τ

η2(θ)|φ(θ)|2dθ ≤ sup
−τ≤θ≤0

E|φ(θ)|2

and hence (6.27) implies (6.19). The proof is complete.

(ii) Neutral Stochastic Differential Delay Equations

Consider the neutral stochastic differential delay equations

d[x(t)− D̃(x(t− τ))]
= F (x(t), x(t− τ), t)dt+G(x(t), x(t− τ), t)dB(t) (6.28)

on t ≥ t0, where D̃ : Rd → Rd, F : Rd × Rd × R+ → Rd and G : Rd ×
Rd × R+ → Rd×m. As before, assume that D̃, F and G are smooth enough
so that equation (6.28) has a unique global solution for any given initial data
x0 = ξ ∈ L2

Ft0
([−τ, 0];Rd). The solution is still denoted by x(t; ξ). Moreover,

assume that D̃(0) = 0, F (0, 0, t) ≡ 0 and G(0, 0, t) ≡ 0. We first employ
Corollary 6.6 to establish one useful result.

∗
Mao (1995b) showed using other techniques that (6.20) can be replaced by the much weaker

conditions κ∈(0,1) and λ1>λ2.
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Corollary 6.8 Assume that there is a positive constant κ such that

|D̃(x)| ≤ κ|x| for all x ∈ Rd.

Assume also that there are two positive constants λ1, λ2 such that

2(x− D̃(y))TF (x, y, t) + |G(x, y, t)|2 ≤ −λ1|x|2 + λ2|y|2

for all (x, y, t) ∈ Rd × Rd × [t0,∞). If (6.20) holds, then the trivial solution of
equation (6.28) is exponentially stable in mean square. In addition, if there is a
K > 0 such that

|F (x, y, t)|2 + |G(x, y, t)|2 ≤ K(|x|2 + |y|2) (6.29)

for all (x, y, t) ∈ Rd × Rd × [t0,∞), then the trivial solution of equation (6.28)
is also almost surely exponentially stable.

This corollary follows from Corollary 6.6 directly since equation (6.28) can
be written as equation (6.18) by defining

D(ϕ) = D̃(ϕ(−τ)), f1(x, t) = F (x, 0, t),
f2(ϕ, t) = −F (ϕ(0), 0, t) + F (ϕ(0), ϕ(−τ), t), g(ϕ, t) = G(ϕ(0), ϕ(−τ), t)

for t ≥ 0, x ∈ Rd and ϕ ∈ C([−τ, 0];Rd). Of course, we can apply Theorems
6.1 and 6.5 to obtain a more general result. For this purpose, let us recall
the notation L2(Ω;Rd) which denotes the family of all Rd-valued F-measurable
random variables X such that E|X|2 <∞.

Corollary 6.9 Let (6.2) hold with κ ∈ (0, 1). Let q > (1− κ)−2. Assume that
there is a constant λ > 0 such that

E
[
2(X − D̃(Y ))TF (X,Y, t) + |G(X,Y, t)|2

]
≤ −λE|X − D̄(Y )|2 (6.30)

for all t ≥ t0 and those X,Y ∈ L2(Ω;Rd) satisfying E|Y |2 < qE|X − D̃(Y )|2.
Then the trivial solution of equation (6.28) is exponentially stable in mean
square. Furthermore, if (6.29) is satisfied, then the trivial solution of equation
(6.28) is also almost surely exponentially stable.

This corollary follows from Theorems 6.1 and 6.5 directly since equation
(6.28) can be written as equation (6.1) by defining

D(ϕ) = D̃(ϕ(−τ)), f(ϕ, t) = F (ϕ(0), ϕ(−τ), t)
and g(ϕ, t) = G(ϕ(0), ϕ(−τ), t)

for t ≥ 0 and ϕ ∈ C([−τ, 0];Rd).
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(iii) Linear Neutral Stochastic Functional Differential Equations

As one more application, let us consider the linear neutral stochastic func-
tional differential equation

d[x(t)−D(xt)] = [−Ax(t) +G0(xt)]dt+
m∑

i=1

Gi(xt)dBi(t) (6.31)

on t ≥ t0 with initial data x0 = ξ ∈ L2
Ft0

([−τ, 0];Rd). Here A is a d×d constant
matrix and

D(ϕ) =
∫ 0

−τ

dγ(θ)ϕ(θ), Gi(ϕ) =
∫ 0

−τ

dβi(θ)ϕ(θ)

for ϕ ∈ C([−τ, 0];Rd), 0 ≤ i ≤ m, where

γ(θ) = (γkl(θ))d×d and βi(θ) = (βkl
i (θ))d×d

with all the elements γkl(θ) and βkl
i (θ) being functions of bounded variation on

−τ ≤ θ ≤ 0. Let Vγkl(θ) denote the total variations of γkl on the interval [−τ, θ]
and let Vγ(θ) = ||Vγkl(θ)||. We can define Vβi(θ) similarly. In particular, let

γ̂ = Vγ(0) and β̂i = Vβi
(0), 0 ≤ i ≤ m.

Let us now impose the first assumption:

0 < γ̂ <
1
2
. (6.32)

Then for any φ ∈ L2
F ([−τ, 0];Rd),

E|D(φ)|2 ≤ γ̂E

∫ 0

−τ

dVγ(θ)|φ(θ)|2 ≤ γ̂2 sup
−τ≤θ≤0

E|φ(θ)|2. (6.33)

In other words, (6.2) is satisfied with κ = γ̂. Moreover,

2E
[
|φ(0)||D(φ)|

]
≤ γ̂

1− 2γ̂
E|φ(0)|2 +

1− 2γ̂
γ̂

E|D(φ)|2

≤ γ̂

1− 2γ̂
E|φ(0)|2 + γ̂(1− 2γ̂) sup

−τ≤θ≤0
E|φ(θ)|2. (6.34)

Similarly, we can show that

2E
[
|φ(0)||G0(φ)|

]
≤ β̂0

1− 2γ̂
E|φ(0)|2 + β̂0(1− 2γ̂) sup

−τ≤θ≤0
E|φ(θ)|2, (6.35)
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2E
[
|D(φ)||G0(φ)|

]
≤ 2γ̂β̂0 sup

−τ≤θ≤0
E|φ(θ)|2, (6.36)

and
m∑

i=1

E|Gi(φ)|2 ≤
[ m∑

i=1

β̂2
i

]
sup

−τ≤θ≤0
E|φ(θ)|2. (6.37)

Using (6.34)–(6.37), we then see that

E

(
2(φ(0)−D(φ))T [−Aφ(0) +G0(φ)] +

m∑
i=1

|Gi(φ)|2
)

≤ −
[
λmin(A+AT )− γ̂||A||+ β̂0

1− 2γ̂

]
E|φ(0)|2

+
[
(γ̂||A||+ β̂0)(1− 2γ̂) + 2γ̂β̂0 +

m∑
i=1

β̂2
i

]
sup

−τ≤θ≤0
E|φ(θ)|2. (6.38)

Applying Corollary 6.6 we conclude the following result.

Corollary 6.10 Let (6.32) hold. If

λmin(A+AT ) >
2(γ̂||A||+ β̂0)

1− 2γ̂
+

1
(1− 2γ̂)2

[
2γ̂β̂0 +

m∑
i=1

β̂2
i

]
, (6.39)

then the trivial solution of equation (6.31) is exponentially stable in mean square
and is also almost surely exponentially stable.

(iv) Examples

Let us discuss a couple of examples to close this section.

Example 6.11 Consider the one-dimensional neutral stochastic differential
delay equation

d[x(t)− κx(t− τ)] = −ax(t)dt+ bx(t− τ)dB(t) (6.40)

on t ≥ t0, where B(t) is a one-dimensional Brownian motion, a > 0, b > 0 and
κ ∈ (0, 1

2 ). Let ε > 0. For x, y ∈ R, compute

2(x− κy)(−ax) + b2y2 = −2ax2 + 2κaxy + b2y2

≤ −(2a− κaε)x2 +
(κa
ε

+ b2
)
y2.

By Corollary 6.8, the trivial solution of equation (6.40) is exponentially stable
both in mean square and almost surely provided we can find an ε > 0 for

(2a− κaε) >
1

(1− 2κ)2
(κa
ε

+ b2
)
,
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that is
2a >

1
(1− 2κ)2

(κa
ε

+ b2
)

+ κaε.

Therefore, the stability condition becomes

2a > min
ε>0

[
1

(1− 2κ)2
(κa
ε

+ b2
)

+ κaε

]
. (6.41)

It is easy to show that the right-hand side of (6.41) reaches its minimum

2κa
1− 2κ

+
b2

(1− 2κ)2

when ε = (1− 2κ)−1. Hence (6.41) becomes

2a >
2κa

1− 2κ
+

b2

(1− 2κ)2
.

We therefore obtain the stability condition

2a(1− 2κ)(1− 3κ) > b2 (6.42)

for equation (6.40).

Example 6.12 Consider the d-dimensional neutral stochastic functional differ-
ential equation

d[x(t)− D̃(Θ(xt))] = f(x(t), t)dt+ g(Θ(xt), t)dB(t) (6.43)

on t ≥ t0. Here D̃ : Rd → Rd, f : Rd × R+ → Rd, g : Rd × R+ → Rd×m, and
Θ is a linear operator from C([−τ, 0];Rd) to Rd defined by

Θ(ϕ) =
1
τ

∫ 0

−τ

ϕ(θ)dθ.

Assume that there are four positive constants λ, κ, κ1, κ2 with κ ∈ (0, 1
2 ) such

that

|D̃(x)| ≤ κ|x|, − 2xT f(x, t) ≤ −λ|x|2,
|f(x, t)| ≤ κ1|x|, |g(x, t)|2 ≤ κ2|x|2.

Then, for any φ ∈ L2
F ([−τ, 0];Rd), we have that

E|D̃(Θ(φ))|2 ≤ κ2E|Θ(φ)|2 ≤ κ2

τ2
E

∣∣∣∣∫ 0

−τ

φ(θ)dθ
∣∣∣∣2

≤ κ2

τ
E

∫ 0

−τ

|φ(θ)|2dθ ≤ κ2 sup
−τ≤θ≤0

E|φ(θ)|2.
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In other words, condition (6.2) is satisfied (with D(·) = D̃(Θ(·))). Similarly, we
can show that

E|g(φ, t)|2 ≤ κ2 sup
−τ≤θ≤0

E|φ(θ)|2.

Moreover, we compute that

E
(
2(φ(0)− D̃(Θ(φ)))T f(φ(0), t) + |g(φ, t)|2

)
≤ −λE|φ(0)|2 + 2E

[
|D̃(Θ(φ))||f(φ(0), t)|

]
+ E|g(φ, t)|2

≤ −λE|φ(0)|2 +
κ1(1− 2κ)

κ
E|D̃(Θ(φ))|2

+
κ

κ1(1− 2κ)
E|f(φ(0), t)|2 + E|g(φ, t)|2

≤
(
λ− κκ1

1− 2κ

)
E|φ(0)|2 +

[
κκ1(1− 2κ) + κ2

]
sup

−τ≤θ≤0
E|φ(θ)|2.

In view of Corollary 6.6, we see that the condition for the mean square and the
almost sure exponential stability is

λ− κκ1

1− 2κ
>
κκ1(1− 2κ) + κ2

(1− 2κ)2
,

i.e.

λ >
2κκ1(1− 2κ) + κ2

(1− 2κ)2
. (6.44)
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Backward

Stochastic Di�erential Equations

7.1 INTRODUCTION

In this chapter we shall study a new type of stochastic equations, namely the
backward stochastic differential equations of the form

x(t) +
∫ T

t

f(x(s), y(s), s)ds +
∫ T

t

[g(x(s), s) + y(s)]dB(s) = X (1.1)

on 0 ≤ t ≤ T . The equation for the adjoint process in optimal stochastic
control (see e.g. Bensoussan (1982), Bismut (1973), Haussmann (1986)) is a
linear version of the equation. In the field of control, we usually regard y(t)
as an adapted control and x(t) the state of the system. The aim is to choose
an adapted control y(t) which drives the state x(t) of the system to the given
target X at time t = T . This is the so-called reachability problem. In the field of
backward stochastic differential equations, we are looking for a pair of adapted
processes {x(t), y(t)} solving the equation. Such a pair is called an adapted
solution of the equation. It is the freedom of choosing the process y(t) that
makes it possible to find an adapted solution.

Pardoux & Peng (1990) established some results on the existence and
uniqueness of the adapted solution under the condition that f(x, y, t) and g(x, t)
are uniformly Lipschitz continuous in (x, y) and in x, respectively. Mao (1995a)
obtained some results in this direction under non-Lipschitz conditions. More
importantly, Pardoux & Peng (1992) gave the probabilistic representation for

235
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the given solution of a certain system of quasilinear parabolic partial differen-
tial equation in terms of the solutions of the backward stochastic differential
equations. In other words, they obtained a generalization of the well-known
Feynman–Kac formula. In view of the powerfulness of the Feynman–Kac formula
in the study of partial differential equations e.g. K.P.P. equation (cf. Freidlin
(1985)), we may expect that this generalized Feynman–Kac formula will play
an important role in the study of quasilinear parabolic partial differential equa-
tions. Hence from both viewpoints of the control theory and the study of partial
differential equations, we see clearly the importance of the study of backward
stochastic differential equations.

7.2 MARTINGALE REPRESENTATION THEOREM

In this section we shall introduce the useful martingale representation the-
orem that will play an important role in this chapter.

Unlike the other chapters, let us stress that in this chapter we are only given
a complete probability space (Ω,F , P ) and an m-dimensional Brownian motion
B(t) on it (without a filtration). We then let {FB

t }t≥0 be the natural filtration
generated by the Brownian motion, that is FB

t = σ{B(s) : 0 ≤ s ≤ t}. Let
{Ft}t≥0 be the augmentation under P of this natural filtration. Then {Ft}t≥0

is a filtration on (Ω,F , P ) satisfying the usual conditions and, moreover, B(t) is
a Brownian motion with respect to the filtration (see Section 1.4).

Let T > 0. It was shown in Section 1.5 that for any f ∈M2([0, T ];Rd×m),
the Itô integral ∫ t

0

f(s)dB(s)

is a continuous square-integrable martingale with respect to {Ft} on t ∈ [0, T ].
In this section, we shall show the converse—any continuous square-integrable
martingale with respect to {Ft} can be represented as an Itô integral. This
result, known as the martingale representation theorem, is very useful in many
applications and is described as follows.

Theorem 2.1 Let {Mt}0≤t≤T be a continuous Rd-valued square-integrable
martingale with respect to {Ft}. Then there is a unique stochastic process
f ∈M2([0, T ];Rd×m) such that

Mt = M0 +
∫ t

0

f(s)dB(s) on t ∈ [0, T ]. (2.1)

By uniqueness we mean that if there is any other process g ∈ M2([0, T ];Rd×m)
such that

Mt = M0 +
∫ t

0

g(s)dB(s) on t ∈ [0, T ],
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then

E

∫ T

0

|f(s)− g(s)|2ds = 0. (2.2)

Clearly, we need only to show the theorem in the case of d = 1. To do so, we
need to present several lemmas. Let C∞0 (Rm×n;R) denote the family of infinitely
many times differentiable functions from Rm×n to R with compact support. Let
L2
Ft

(Ω; R) denote the family of all real-valued Ft-measurable random variables
ξ such that E|ξ|2 < ∞. Let L2([0, T ];R1×m) denote the family of all Borel
measurable functions h from [0, T ] to R1×m such that

∫ T

0
|h(t)|2dt < ∞. Note

that the functions in L2([0, T ];R1×m) are deterministic and L2([0, T ];R1×m) is
a subset of M2([0, T ];R1×m).

Lemma 2.2 The set of random variables

{ϕ(B(t1), · · · , B(tn)) : ti ∈ [0, T ], ϕ ∈ C∞0 (Rm×n;R), n = 1, 2, · · ·}

is dense in L2
FT

(Ω; R).

Proof. Let {ti}i≥1 be a dense subset of [0, T ]. For each integer n ≥ 1, let Gn

be the σ-algebra generated by B(t1), · · · , B(tn), i.e. Gn = σ{B(t1), · · · , B(tn)}.
Obviously

Gn ⊂ Gn+1 and FT = σ
( ∞⋃

n=1

Gn

)
.

Let g ∈ L2
FT

(Ω; R) be arbitrary. By the Doob martingale convergence theorem
(i.e. Theorem 1.3.5), we have that

E(g|Gn) → E(g|FT ) = g as n →∞

almost surely and in L2 as well. On the other hand, by Lemma 1.2.1, for each
n, there is a Borel measurable function gn : Rm×n → R such that

E(g|Gn) = gn(B(t1), · · · , B(tn)).

However, such gn(B(t1), · · · , B(tn)) can be approximated in L2
FT

(Ω; R) by func-
tions ϕn,k(B(t1), · · · , B(tn)), where ϕn,k ∈ C∞0 (Rm×n;R), and hence the asser-
tion follows.

Lemma 2.3 The linear span of the random variables of the form

exp
(∫ T

0

h(t)dB(t)− 1
2

∫ T

0

|h(t)|2dt

)
, h ∈ L2([0, T ];R1×m) (2.3)

is dense in L2
FT

(Ω; R).

Proof. The assertion holds provided we can show that if g ∈ L2
FT

(Ω; R) is
orthogonal (in L2

FT
(Ω; R)) to all random variables of form (2.3), then g = 0.



238 Backward Stochastic Differential Equations [Ch.7

Let g be any such random variable. Then for all λ = (λij)n×m ∈ Rn×m and all
t1, · · · , tn ∈ [0, T ], we have

G(λ) := E
{

g exp
(
trace

[
λ(B(t1), · · · , B(tn))

])}
= 0, (2.4)

for

exp
(∫ T

0

h(t)dB(t)− 1
2

∫ T

0

|h(t)|2dt

)
= exp

(
trace

[
λ(B(t1), · · · , B(tn))

]
− 1

2

∫ T

0

|h(t)|2dt

)
if set

h(t) =
n∑

i=1

(λi + λi+1)I[ti,ti−1)(t),

where t0 = 0, λi = (λi1, · · · , λim) and λn+1 = 0. The function G(λ) is real
analytic in λ ∈ Rn×m and hence has an analytic extension to the complex space
Cn×m given by

G(z) = E
{

g exp
(
trace

[
z(B(t1), · · · , B(tn))

])}
for z = (zij)n×m ∈ Cn×m. Since G = 0 on Rn×m and G is analytic, we must
have G = 0 on the whole Cn×m. In particular,

G(iY ) = E
{

g exp
(
i trace

[
Y (B(t1), · · · , B(tn))

])}
= 0 (2.5)

for all Y = (yij)n×m ∈ Rn×m. Now, for any function ϕ(X), X = (xij)m×n, in
C∞0 (Rm×n, R), let ϕ̂(Y ) be the Fourier transform of ϕ(X), namely

ϕ̂(Y ) = (2π)−
nm
2

∫
Rm×n

ϕ(X) exp[−i trace(Y X)]dX.

Note from the inverse Fourier transform theorem that

ϕ(X) = (2π)−
nm
2

∫
Rn×m

ϕ̂(Y ) exp[i trace(Y X)]dY.

We then compute

E[gϕ(B(t1), · · · , B(tn))]

= E

[
g(2π)−

nm
2

∫
Rn×m

ϕ̂(Y ) exp
(
i trace

[
Y (B(t1), · · · , B(tn))

])
dY

]
= (2π)−

nm
2

∫
Rn×m

ϕ̂(Y )E
{

g exp
(
i trace

[
Y (B(t1), · · · , B(tn))

])}
dY

= 0. (2.6)
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This, together with Lemma 2.2, means that g is orthogonal to a dense subset of
L2
FT

(Ω; R). We must therefore have that g = 0. The proof is therefore complete.

Lemma 2.4 For any ξ ∈ L2
FT

(Ω; R), there exists a unique stochastic process
f ∈M2([0, T ];R1×m) such that

ξ = Eξ +
∫ T

0

f(s)dB(s). (2.7)

By uniqueness we mean that if there is any other process g ∈ M2([0, T ];R1×m)
such that

ξ = Eξ +
∫ T

0

g(s)dB(s), (2.8)

then

E

∫ T

0

|f(s)− g(s)|2ds = 0. (2.9)

Proof. The uniqueness is rather obvious, for (2.7) and (2.8) give∫ T

0

[f(s)− g(s)]dB(s) = 0

which implies (2.9) by the property of the Itô integral. To show the existence,
we first assume that ξ has the form of (2.3), that is

ξ = exp
(∫ T

0

h(t)dB(t)− 1
2

∫ T

0

|h(t)|2dt

)
for some h ∈ L2([0, T ];R1×m). Define

x(t) = exp
(∫ t

0

h(s)dB(s)− 1
2

∫ t

0

|h(s)|2ds

)
, 0 ≤ t ≤ T.

By Itô’s formula,

dx(t) = x(t)
[
h(t)dB(t)− 1

2
|h(t)|2dt

]
+

1
2
x(t)|h(t)|2dt

= x(t)h(t)dB(t).

This yields that

x(t) = 1 +
∫ t

0

x(s)h(s)dB(s).

In particular,

ξ = x(T ) = 1 +
∫ T

0

x(s)h(s)dB(s),
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which gives Eξ = 1. Therefore the required assertion (2.7) holds in this case
with f(t) = x(t)h(t). By the linearity of (2.7), we see that (2.7) holds for any
linear combination of the functions of form (2.3). Now, let ξ ∈ L2

FT
(Ω; R) be

arbitrary. By Lemma 2.3, we can approximate ξ in L2
FT

(Ω; R) by {ξn}, where
each ξn is a linear combination of the functions of form (2.3). So, for each n, we
have a process fn ∈M2([0, T ];R1×m) such that

ξn = Eξn +
∫ T

0

fn(s)dB(s). (2.10)

Hence

E

∫ T

0

|fn(s)− fm(s)|2ds

= E

∣∣∣∣∫ T

0

[fn(s)− fm(s)]dB(s)
∣∣∣∣2

= E|ξn − Eξn − ξm + Eξm|2

= E|ξn − ξm|2 − |Eξn − Eξm|2

→ 0 as n, m →∞.

In other words, {fn} is a Cauchy sequence in M2([0, T ];R1×m) and hence con-
verges to some f ∈M2([0, T ];R1×m). We can now let n →∞ in (2.10) to obtain
that

ξ = Eξ +
∫ T

0

f(s)dB(s)

as desired. The proof is complete.
We can now begin to prove the martingale representation theorem.

Proof Theorem 2.1. Without any loss of generality, we may assume that d = 1.
Applying Lemma 2.4 to ξ = M(T ), we see that there exists a unique process
(the uniqueness follows here) f ∈M2([0, T ];R1×m) such that

M(T ) = EM(T ) +
∫ T

0

f(s)dB(s).

By the martingale property of M(t) we have EM(t) = EM(0). Since M(0) is
F0-measurable, it must be a constant almost surely and hence EM(0) = M(0)
a.s. Then

M(T ) = M(0) +
∫ T

0

f(s)dB(s). (2.11)

Now for any 0 ≤ t ≤ T , by Theorem 1.5.21, we have that

M(t) = E(M(T )|Ft) = M(0) + E

(∫ T

0

f(s)dB(s)|Ft

)
= M(0) +

∫ t

0

f(s)dB(s),
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which is the required assertion (2.1). The proof is therefore complete.

7.3 EQUATIONS WITH LIPSCHITZ COEFFICIENTS

Let P denotes the σ-algebra of Ft-progressively measurable subsets of
[0, T ]×Ω. Let f be a mapping from Rd×Rd×m×[0, T ]×Ω to Rd which is assumed
to be Bd⊗Bd×m⊗P-measurable. Let g be a mapping from Rd×[0, T ]×Ω to Rd×m

which is assumed to be Bd ⊗ P-measurable. Let X be a given FT -measurable
Rd-valued random variable such that E|X|2 < ∞, that is X ∈ L2

FT
(Ω; Rd).

In this section we shall discuss the following backward stochastic differential
equation

x(t) +
∫ T

t

f(x(s), y(s), s)ds +
∫ T

t

[g(x(s), s) + y(s)]dB(s) = X (3.1)

on t ∈ [0, T ], where x(·) and y(·) are Rd-valued and Rd×m-valued, respectively.
If we write equation (3.1) as

x(T )− x(t) =
∫ T

t

f(x(s), y(s), s)ds +
∫ T

t

[g(x(s), s) + y(s)]dB(s),

we see clearly that x(t) is an Itô process with the stochastic differential

dx(t) = f(x(t), y(t), t)dt + [g(x(t), t) + y(t)]dB(t). (3.2)

We may therefore interpret the backward equation (3.1) as the stochastic differ-
ential equation (3.2) with final value x(T ) = X. It is this final value, instead of
initial value, that makes the backward stochastic differential equations much dif-
ferent from the (forward) stochastic differential equations discussed in Chapter
2. Let us now give a precise definition of a solution to the backward stochastic
differential equation.

Definition 3.1 A pair of stochastic processes

{x(t), y(t)}0≤t≤T ∈M2([0, T ];Rd)×M2([0, T ];Rd×m)

is called a solution of the backward stochastic differential equation (3.1) if it has
the following properties:

(i) f(x(·), y(·), ·) ∈M2([0, T ];Rd) and g(x(·), ·) ∈M2([0, T ];Rd×m);
(ii) equation (3.1) holds for every t ∈ [0, T ] with probability 1.

A solution {x(t), y(t)} is said to be unique if for any other solution {x̄(t), ȳ(t)}
we have

P{x(t) = x̄(t) for all 0 ≤ t ≤ T} = 1
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and

E

∫ T

0

|y(s)− ȳ(s)|2ds = 0.

The following existence-and-uniqueness theorem is due to Pardoux & Peng
(1990).

Theorem 3.2 Assume that

f(0, 0, ·) ∈M2([0, T ];Rd) and g(0, ·) ∈M2([0, T ];Rd×m). (3.3)

Assume also that there exists a positive constant K > 0 such that

|f(x, y, t)− f(x̄, ȳ, t)|2 ≤ K(|x− x̄|2 + |y − ȳ|2) a.s. (3.4)

and
|g(x, t)− g(x̄, t)|2 ≤ K|x− x̄|2 a.s. (3.5)

for all x, x̄ ∈ Rd, y, ȳ ∈ Rd×m and t ∈ [0, T ]. Then there exists a unique solution
{x(t), y(t)} to equation (3.1) in M2([0, T ];Rd)×M2([0, T ];Rd×m).

Let us present a number of lemmas in order to prove this theorem.

Lemma 3.3 Let f(·) ∈ M2([0, T ];Rd) and g(·) ∈ M2([0, T ];Rd×m). Then
there exists a unique pair {x(t), y(t)} in M2([0, T ];Rd)×M2([0, T ];Rd×m) such
that

x(t) +
∫ T

t

f(s)ds +
∫ T

t

[g(s) + y(s)]dB(s) = X (3.6)

for all 0 ≤ t ≤ T .

Proof. Define

M(t) = E

(
X −

∫ T

0

f(s)ds|Ft

)
, 0 ≤ t ≤ T.

Then M(t) is a square-integrable martingale. By Theorem 2.1, there is a unique
process ŷ(·) ∈M2([0, T ];Rd×m) such that

M(t) = M(0) +
∫ t

0

ŷ(s)dB(s), 0 ≤ t ≤ T.

Define

x(t) = M(t) +
∫ t

0

f(s)ds and y(t) = ŷ(t)− g(t)

for 0 ≤ t ≤ T . Clearly, {x(t), y(t)} ∈ M2([0, T ];Rd)×M2([0, T ];Rd×m). More-
over, ∫ T

t

[g(s) + y(s)]dB(s) =
∫ T

t

ŷ(s)dB(s)

=
∫ T

0

ŷ(s)dB(s)−
∫ t

0

ŷ(s)dB(s) = M(T )−M(t).
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Noting

M(T ) = X −
∫ T

0

f(s)ds,

we obtain that∫ T

t

[g(s) + y(s)]dB(s) = X −
∫ T

0

f(s)ds−M(t) = X − x(t)−
∫ T

t

f(s)ds,

which is equation (3.6). To show the uniqueness, let {x̄(t), ȳ(t)} be another pair
which solves equation (3.6). Then

x(t)− x̄(t) = −
∫ T

t

[y(s)− ȳ(s)]dB(s), 0 ≤ t ≤ T.

Hence, for every t ∈ [0, T ]

x(t)− x̄(t) = E(x(t)− x̄(t)|Ft)

= −E

(∫ T

t

[y(s)− ȳ(s)]dB(s)|Ft

)
= 0 a.s.

Noting that x(t) is continuous, we see easily that x(t) = x̄(t) for all 0 ≤ t ≤ T
a.s. Now

0 = x(0)− x̄(0) = −
∫ T

0

[y(s)− ȳ(s)]dB(s)

which yields immediately that

E

∫ T

0

|y(s)− ȳ(s)|2ds = 0.

The uniqueness has also been proved.

Lemma 3.4 Let g(·) ∈ M2([0, T ];Rd×m). Let f be a mapping from Rd×m ×
[0, T ]× Ω to Rd which is Bd×m ⊗ P-measurable. Assume that

f(0, ·) ∈M2([0, T ];Rd).

Assume also that there exists a positive constant K > 0 such that

|f(y, t)− f(ȳ, t)|2 ≤ K|y − ȳ|2 a.s. (3.7)

for all y, ȳ ∈ Rd×m and t ∈ [0, T ]. Then the backward stochastic differential
equation

x(t) +
∫ T

t

f(y(s), s)ds +
∫ T

t

[g(s) + y(s)]dB(s) = X (3.8)

has a unique solution {x(t), y(t)} in M2([0, T ];Rd)×M2([0, T ];Rd×m).
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Proof. We first prove the uniqueness. Let us {x(t), y(t)} and {x̄(t), ȳ(t)} be
two solutions. Then, recalling (3.2), we easily see that

d[x(t)− x̄(t)] = [f(y(t), t)− f(ȳ(t), t)]dt + [y(t)− ȳ(t)]dB(t).

By Itô’s formula, for all 0 ≤ t ≤ T , we have that

d|x(t)− x̄(t)|2 = 2[x(t)− x̄(t)]T [f(y(t), t)− f(ȳ(t), t)]dt

+|y(t)− ȳ(t)|2dt + 2[x(t)− x̄(t)]T [y(t)− ȳ(t)]dB(t).

Hence

−|x(t)− x̄(t)|2 = 2
∫ T

t

[x(s)− x̄(s)]T [f(y(s), s)− f(ȳ(s), s)]ds

+
∫ T

t

|y(s)− ȳ(s)|2ds + 2
∫ T

t

[x(s)− x̄(s)]T [y(s)− ȳ(s)]dB(s).

Taking expectation on both sides yields that

E|x(t)− x̄(t)|2 + E

∫ T

t

|y(s)− ȳ(s)|2ds

= −2E

∫ T

t

[x(s)− x̄(s)]T [f(y(s), s)− f(ȳ(s), s)]ds.

Making use of the elementary inequality 2ab ≤ a2/ε + εb2 (ε > 0) and the
Lipschitz condition (3.7) we obtain that

E|x(t)− x̄(t)|2 + E

∫ T

t

|y(s)− ȳ(s)|2ds

≤ 1
ε
E

∫ T

t

|x(s)− x̄(s)|2ds + εKE

∫ T

t

|y(s)− ȳ(s)|2ds.

Setting ε = 1/2K yields

E|x(t)− x̄(t)|2 + E

∫ T

t

|y(s)− ȳ(s)|2ds

≤ 2KE

∫ T

t

|x(s)− x̄(s)|2ds +
1
2
E

∫ T

t

|y(s)− ȳ(s)|2ds. (3.8)

In particular, this implies that

E|x(t)− x̄(t)|2 ≤ 2KE

∫ T

t

|x(s)− x̄(s)|2ds.

The Gronwall inequality now gives that

E|x(t)− x̄(t)|2 = 0 for all 0 ≤ t ≤ T,
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which implies that x(t) = x̄(t) for all 0 ≤ t ≤ T a.s. Substituting this into (3.8)
we also see that

E

∫ T

0

|y(s)− ȳ(s)|2ds = 0.

The uniqueness has been proved.
Let us now proceed to prove the existence. Set y0(t) ≡ 0. By Lemma 3.3,

there is a unique pair {x1(t), y1(t)} in M2([0, T ];Rd) ×M2([0, T ];Rd×m) such
that

x1(t) +
∫ T

t

f(y0(s), s)ds +
∫ T

t

[g(s) + y1(s)]dB(s) = X.

Making use of Lemma 3.3 recursively, we can define, for every n = 1, 2, · · ·, a
pair {xn(t), yn(t)} in M2([0, T ];Rd)×M2([0, T ];Rd×m) by

xn(t) +
∫ T

t

f(yn−1(s), s)ds +
∫ T

t

[g(s) + yn(s)]dB(s) = X. (3.9)

In the same way as in the proof of the uniqueness above, we can show that

E|xn+1(t)− xn(t)|2 + E

∫ T

t

|yn+1(s)− yn(s)|2ds

≤ 2KE

∫ T

t

|xn+1(s)− xn(s)|2ds +
1
2
E

∫ T

t

|yn(s)− yn−1(s)|2ds. (3.10)

For every n ≥ 1, define

un(t) = E

∫ T

t

|xn(s)− xn−1(s)|2ds

and

vn(t) = E

∫ T

t

|yn(s)− yn−1(s)|2ds.

It then follows from (3.10) that

− d

dt

(
un+1(t)e2Kt

)
+ e2Ktvn+1(t) ≤

1
2
e2Ktvn(t). (3.11)

Integrating both sides from t to T , we obtain that

un+1(t)e2Kt +
∫ T

t

e2Ksvn+1(s)ds ≤ 1
2

∫ T

t

e2Ksvn(s)ds.

Hence

un+1(t) +
∫ T

t

e2K(s−t)vn+1(s)ds ≤ 1
2

∫ T

t

e2K(s−t)vn(s)ds. (3.12)
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In particular, this implies that∫ T

0

e2Ksvn+1(s)ds ≤ 1
2

∫ T

0

e2Ksvn(s)ds

≤ 1
2n

∫ T

0

e2Ksv1(s)ds ≤ 1
2n

v1(0)
∫ T

0

e2Ksds ≤ Ce2KT

K2n+1
, (3.13)

where C = v1(0) = E
∫ T

0
|y1(s)|2ds. Substituting this into (3.11) implies that

un+1(0) ≤ Ce2KT

K2n+1
. (3.14)

It then follows from (3.10) and (3.14) that

vn+1(0) ≤ 2Kun+1(0) +
1
2
vn(0) ≤ 1

2n
Ce2KT +

1
2
vn(0),

which implies immediately that

vn+1(0) ≤ 1
2n

[
nCe2KT + v1(0)

]
. (3.15)

We now see from (3.14) and (3.15) that {xn(·)} and {yn(·)} are Cauchy sequences
inM2([0, T ];Rd) andM2([0, T ];Rd×m), and denote their limits by x(·) and y(·),
respectively. Finally, letting n →∞ in (3.9) we obtain that

x(t) +
∫ T

t

f(y(s), s)ds +
∫ T

t

[g(s) + y(s)]dB(s) = X,

that is, {x(t), y(t)} is a solution. The existence has also been proved and there-
fore the proof of the lemma is complete.

We can now begin to prove Theorem 3.2.

Proof of Theorem 3.2. We first prove the uniqueness. Assume that {x(t), y(t)}
and {x̄(t), ȳ(t)} are two solutions. In the same way as in the proof of Lemma
3.4 we can show that

E|x(t)− x̄(t)|2 + E

∫ T

t

|y(s)− ȳ(s)|2ds

= −2E

∫ T

t

[x(s)− x̄(s)]T [f(x(s), y(s), s)− f(x̄(s), ȳ(s), s)]ds

− E

∫ T

t

|g(x(s), s)− g(x̄(s), s)|2ds

− 2E

∫ T

t

trace
(
[g(x(s), s)− g(x̄(s), s)]T [y(s)− ȳ(s)]

)
ds

≤ 4KE

∫ T

t

|x(s)− x̄(s)|2 +
1

4K
E

∫ T

t

|f(x(s), y(s), s)− f(x̄(s), ȳ(s), s)|2ds

+ 4E

∫ T

t

|g(x(s), s)− g(x̄(s), s)|2 +
1
4
E

∫ T

t

|y(s)− ȳ(s)|2ds

≤ (8K + 1)E
∫ T

t

|x(s)− x̄(s)|2 +
1
2
E

∫ T

t

|y(s)− ȳ(s)|2ds. (3.16)
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The uniqueness then follows by applying the Gronwall inequality as we did in
the proof of Lemma 3.4.

Let us now show the existence. Set y0(t) ≡ 0. With the help of Lemma
3.4, we can define recursively, for every n = 1, 2, · · ·, a pair {xn(t), yn(t)} in
M2([0, T ];Rd)×M2([0, T ];Rd×m) by

xn(t) +
∫ T

t

f(xn−1(s), yn(s), s)ds

+
∫ T

t

[g(xn−1(s), s) + yn(s)]dB(s) = X. (3.17)

In the same way as in the proof of (3.16), we can show that

E|xn+1(t)− xn(t)|2 + E

∫ T

t

|yn+1(s)− yn(s)|2ds

≤ 4KE

∫ T

t

|xn+1(s)− xn(s)|2ds

+ (4K + 1)E
∫ T

t

|xn(s)− xn−1(s)|2ds

+
1
2
E

∫ T

t

|yn+1(s)− yn(s)|2ds.

Hence

E|xn+1(t)− xn(t)|2 +
1
2
E

∫ T

t

|yn+1(s)− yn(s)|2ds

≤ (4K + 1)E
∫ T

t

[
|xn+1(s)− xn(s)|2 + |xn(s)− xn−1(s)|2

]
ds. (3.18)

Define

un(t) = E

∫ T

t

|xn(s)− xn−1(s)|2ds.

It then follows from (3.18) that

− d

dt

(
un+1(t)e(4K+1)t

)
≤ (4K + 1)e(4K+1)tun(t).

Integrating both sides from t to T yields that

un+1(t) ≤ (4K + 1)
∫ T

t

e(4K+1)(s−t)un(s)ds

≤ (4K + 1)e(4K+1)T

∫ T

t

un(s)ds.
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Iterating this inequality, we obtain that

un+1(0) ≤
[
(4K + 1)Te(4K+1)T

]n

n!
u1(0).

This, together with (3.18), implies that {xn(·)} and {yn(·)} are Cauchy sequences
in M2([0, T ];Rd) and M2([0, T ];Rd×m). Denote their limits by x(·) and y(·),
respectively. Finally, we can let n →∞ in (3.17) to obtain that

x(t) +
∫ T

t

f(x(s), y(s), s)ds +
∫ T

t

[g(x(s), s) + y(s)]dB(s) = X.

That is, {x(t), y(t)} is a solution. The proof is therefore complete.

7.4 EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS

In the previous section, we established the existence-and-uniqueness theo-
rem of the solution for the backward stochastic differential equation under the
uniform Lipschitz condition. On the other hand, it is somewhat too strong to
require the uniform Lipschitz continuity in applications e.g. in dealing with
quasilinear parabolic partial differential equations. It is therefore important to
find some weaker conditions than the Lipschitz one under which the backward
stochastic differential equation still has a unique solution. In the first instance,
we would perhaps like to try the local Lipschitz condition plus the linear growth
condition, as these conditions guarantee the existence and uniqueness of the so-
lution for a (forward) stochastic differential equation. To be precise, let us state
these conditions as follows:

For each n = 1, 2, · · ·, there exists a constant Kn > 0 such that

|f(x, y, t)− f(x̄, ȳ, t)|2 ≤ Kn(|x− x̄|2 + |y − ȳ|2) a.s.

|g(x, t)− g(x̄, t)|2 ≤ Kn|x− x̄|2 a.s.

for all 0 ≤ t ≤ T, x, x̄ ∈ Rd, y, ȳ ∈ Rd×m with max{|x|, |x̄|, |y|, |ȳ|} < n.
Moreover, there exists a constant K > 0 such that

|f(x, y, t)|2 ≤ K(1 + |x|2 + |y|2) a.s.

|g(x, t)|2 ≤ K(1 + |x|2) a.s.

for all 0 ≤ t ≤ T, x ∈ Rd and y ∈ Rd×m.

Unfortunately, it is still open whether these conditions guarantee the existence
and uniqueness of the solution to the backward stochastic differential equation
(3.1). The difficulty here is that the techniques of stopping time and localiza-
tion seem not to work for backward stochastic differential equations. Now the
question is: Are there any weaker conditions than the Lipschitz continuity under
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which the backward stochastic differential equation has a unique solution? The
answer is of course positive, and the main aim of this section is to show the
following conditions will do:

For all 0 ≤ t ≤ T, x, x̄ ∈ Rd and y, ȳ ∈ Rd×m, we have

|f(x, y, t)− f(x̄, ȳ, t)|2 ≤ κ(|x− x̄|2) + K|y − ȳ|2 a.s. (4.1)

and
|g(x, t)− g(x̄, t)|2 ≤ κ(|x− x̄|2) a.s. (4.2)

where K is a positive constant and κ(·) is a concave increasing function
from R+ to R+ such that κ(0) = 0, κ(u) > 0 for u > 0 and∫

0+

du

κ(u)
= ∞. (4.3)

Let us make a few comments about these conditions before we state the
main result. First of all, since κ is concave and κ(0) = 0, we can find a pair of
positive constants a and b such that

κ(u) ≤ a + bu for all u ≥ 0. (4.4)

We therefore see that under conditions (3.3) and (4.1)–(4.3),

f(x(·), y(·), ·) ∈M2([0, T ];Rd) and g(x(·), y(·), ·) ∈M2([0, T ];Rd×m)

whenever

x(·) ∈M2([0, T ];Rd) and y(·) ∈M2([0, T ];Rd×m).

Secondly, let us give a few examples for the function κ(·) in order to see that
conditions (4.1)–(4.4) are irrestrictive. Let K > 0 and let δ ∈ (0, 1) be sufficiently
small. Define

κ1(u) = Ku for u ≥ 0;

κ2(u) =
{

u log(u−1) for 0 ≤ u ≤ δ,
δ log(δ−1) + κ̇2(δ−)(u− δ) for u > δ;

κ3(u) =
{

u log(u−1) log log(u−1) for 0 ≤ u ≤ δ,
δ log(δ−1) log log(δ−1) + κ̇3(δ−)(u− δ) for u > δ.

It is easy to verify that these are all concave non-decreasing functions satisfying∫
0+

du

κi(u)
= ∞.
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In particular, we see clearly that if let κ(u) = Ku, then conditions (4.1)–(4.3)
reduce to the Lipschitz conditions (3.4) and (3.5). In other words, conditions
(4.1)–(4.3) are much weaker than the Lipschitz conditions (3.4) and (3.5). There-
fore, the following result is a generalization of Theorem 3.2.

Theorem 4.1 Assume that conditions (3.3) and (4.1)–(4.3) are fulfilled. Then
there exists a unique solution {x(·), y(·)} to the backward stochastic differential
equation (3.1) in M2([0, T ];Rd)×M2([0, T ];Rd×m).

The proof of this theorem is rather technical and we shall devote the re-
mainder of this section to it.

We need to prepare a number of lemmas. Let us first construct an approx-
imate sequence using an iteration of the Picard type with the help of Lemma
3.4. Let x0(t) ≡ 0, and let {xn(t), yn(t) : 0 ≤ t ≤ T}n≥1 be a sequence in
M2([0, T ];Rd)×M2([0, T ];Rd×m) defined recursively by

xn(t) +
∫ T

t

f(xn−1(s), yn(s), s)ds

+
∫ T

t

[g(xn−1(s), s) + yn(s)]dB(s) = X (4.5)

on 0 ≤ t ≤ T . This sequence is well defined since once xn−1(·) ∈M2([0, T ];Rd)
is given, f(xn−1(t), y, t) is Lipschitz continuous in y and

f(xn−1(·), 0, ·) ∈M2([0, T ];Rd) and g(xn−1(·), ·) ∈M2([0, T ];Rd×m),

hence Lemma 3.4 can be used to define xn(t) and yn(t).

Lemma 4.2 Assume that conditions (3.3) and (4.1)–(4.3) are fulfilled. Then
for all 0 ≤ t ≤ T and n ≥ 1,

E|xn(t)|2 ≤ C1 and E

∫ T

0

|yn(s)|2ds ≤ C2, (4.6)

where C1 and C2 are both positive constants independent of n.

Proof. Applying Itô’s formula to |xn(t)|2 we deduce that

|X|2 − |xn(t)|2 = 2
∫ T

t

(
xn(s), f(xn−1(s), yn(s), s)

)
ds

+ 2
∫ T

t

(
xn(s), [g(xn−1(s), s) + yn(s)]dB(s)

)
+

∫ T

t

|g(xn−1(s), s) + yn(s)|2ds.
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Thus

E|xn(t)|2 + E

∫ T

t

|yn(s)|2ds

= E|X|2 − 2E

∫ T

t

(xn(s), f(xn−1(s), yn(s), s)
)
ds

− E

∫ T

t

(
|g(xn−1(s), s)|2 + 2trace[gT (xn−1(s), s)yn(s)]

)
ds.

Therefore, using the elementary inequality 2|uv| ≤ u2/α + αv2 for any α > 0,
we see that

E|xn(t)|2 + E

∫ T

t

|yn(s)|2ds

≤ E|X|2 +
1
α

E

∫ T

t

|xn(s)|2ds + αE

∫ T

t

|f(xn−1(s), yn(s), s)|2ds

+
1
α

E

∫ T

t

|g(xn−1(s), s)|2ds + αE

∫ T

t

|yn(s)|2ds. (4.7)

But (4.1) and (4.4) we derive that

|f(xn−1(s), yn(s), s)|2

≤ 2|f(0, 0, s)|2 + 2|f(xn−1(s), yn(s), s)− f(0, 0, s)|2

≤ 2|f(0, 0, s)|2 + 2κ(|xn−1(s)|2) + 2K|yn(s)|2

≤ 2|f(0, 0, s)|2 + 2a + 2b|xn−1(s)|2 + 2K|yn(s)|2.

Similarly, it follows from (4.2) and (4.4) that

|g(xn−1(s), s)|2 ≤ 2|g(0, 0, s)|2 + 2a + 2b|xn−1(s)|2.

Substituting these into (4.7) gives that

E|xn(t)|2 + E

∫ T

t

|yn(s)|2ds ≤ C3(α) +
1
α

∫ T

t

E|xn(s)|2ds

+2b(α +
1
α

)
∫ T

t

E|xn−1(s)|2ds + α(2K + 1)E
∫ T

t

|yn(s)|2ds,

where

C3(α) = E|X|2 + 2a
(
α +

1
α

)
+ 2αE

∫ T

0

|f(0, 0, s)|2ds

+
2
α

E

∫ T

0

|g(0, 0, s)|2ds.
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In particular, choosing α = 1/(4K + 2) and setting C4 = C3(1/(4K + 2)), we
get that

E|xn(t)|2 +
1
2
E

∫ T

t

|yn(s)|2ds

≤ C4 + (4K + 2)
∫ T

t

E|xn(s)|2ds

+ 2b

[
1

4K + 2
+ 4K + 2

] ∫ T

t

E|xn−1(s)|2ds

≤ C4 + C5

∫ T

t

max{E|xn−1(s)|2, E|xn(s)|2}ds, (4.8)

where C5 = 4K +2+2b[(4K +2)−1 +4K +2]. Now let k be any positive integer.
If 1 ≤ n ≤ k, (4.8) implies (recalling x0(t) ≡ 0) that

E|xn(t)|2 ≤ C4 + C5

∫ T

t

(
max
1≤i≤k

E|xi(s)|2
)

ds.

Therefore

max
1≤n≤k

E|xn(t)|2 ≤ C4 + C5

∫ T

t

(
max

1≤n≤k
E|xn(s)|2

)
ds.

An application of the well-known Gronwall inequality implies

max
1≤n≤k

E|xn(t)|2 ≤ C4e
C5(T−t) ≤ C4e

C5T .

Since k is arbitrary, the first inequality of (4.6) follows by setting C1 = C4e
C5T .

Finally, it follows from (4.8) that

E

∫ T

0

|yn(s)|2ds ≤ 2(C4 + C5C1T ) := C2.

The proof is complete.

Lemma 4.3 Under conditions (3.3) and (4.1)–(4.3), there exists a constant
C6 > 0 such that

E|xn+k(t)− xn(t)|2 ≤ C6

∫ T

t

κ
(
E|xn+k−1(s)− xn−1(s)|2

)
ds

for all 0 ≤ t ≤ T and n, k ≥ 1.
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Proof. Applying Itô’s formula to |xn+k(t)− xn(t)|2 we have that

− E|xn+k(t)− xn(t)|2

= 2E

∫ T

t

(
xn+k(s)− xn(s),

f(xn+k−1(s), yn+k(s), s)− f(xn−1(s), yn(s), s)
)
ds

+ E

∫ T

t

|g(xn+k−1(s), s) + yn+k(s)− g(xn−1(s), s)− yn(s)|2ds.

In the same way as in the proof of Lemma 4.2 we can then show that

E|xn+k(t)− xn(t)|2 +
1
2
E

∫ T

t

|yn+k(s)− yn(s)|2ds

≤ (4K + 2)
∫ T

t

E|xn+k(s)− xn(s)|2ds

+ 2
[
4K + 2 +

1
4K + 2

] ∫ T

t

κ
(
E|xn+k−1(s)− xn−1(s)|2

)
ds. (4.9)

Now fix t ∈ [0, T ] arbitrarily. If t ≤ r ≤ T , then

E|xn+k(r)− xn(r)|2 ≤ (4K + 2)
∫ T

r

E|xn+k(s)− xn(s)|2ds

+2
[
4K + 2 +

1
4K + 2

] ∫ T

t

κ
(
E|xn+k−1(s)− xn−1(s)|2

)
ds.

In view of the Gronwall inequality we see that

E|xn+k(t)− xn(t)|2 ≤ 2
[
4K + 2 +

1
4K + 2

]
e(4K+2)(T−t)

×
∫ T

t

κ(E|xn+k−1(s)− xn−1(s)|2)ds.

Hence the required assertion follows by setting

C6 = 2
[
4K + 2 +

1
4K + 2

]
e(4K+2)T .

The proof is complete.

Lemma 4.4 Under conditions (3.3) and (4.1)–(4.3), there exists a constant
C7 > 0 such that

E|xn+k(t)− xn(t)|2 ≤ C7(T − t)

for all 0 ≤ t ≤ T and n, k ≥ 1.
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Proof. By Lemmas 4.2 and 4.3, we have that

E|xn+k(t)− xn(t)|2 ≤ C6

∫ T

t

κ(4C1)ds = C6κ(4C1)(T − t)

and the assertion follows by letting C7 = C6κ(4C1). The proof is complete.

We now begin to present a key lemma. Set κ̄(u) = C6κ(u). Choose T1 ∈
[0, T ) for

κ̄(C7(T − t)) ≤ C7 for all T1 ≤ t ≤ T. (4.10)

Fix k ≥ 1 arbitrarily and define two sequences of functions {ϕn(t) : 0 ≤ t ≤
T}n≥1 and {ϕ̃n,k(t) : 0 ≤ t ≤ T}n≥1 as follows:

ϕ1(t) = C7(T − t),

ϕn+1(t) =
∫ T

t

κ̄(ϕn(s))ds, n = 1, 2, · · · ,

ϕ̃n,k(t) = E|xn+k(t)− xn(t)|2, n = 1, 2, · · · .

Lemma 4.5 Assume that conditions (3.3) and (4.1)–(4.3) are satisfied. Then
for each k ≥ 1 and all n ≥ 1, we have that

0 ≤ ϕ̃n,k(t) ≤ ϕn(t) ≤ ϕn−1(t) ≤ · · · ≤ ϕ1(t) (4.11)

whenever t ∈ [T1, T ].

Proof. Let t ∈ [T1, T ]. First of all, by Lemma 4.4,

ϕ̃1,k(t) = E|x1+k(t)− x1(t)|2 ≤ C7(T − t) = ϕ1(t),

that is, (4.11) holds for n = 1. Next, by Lemma 4.3,

ϕ̃2,k(t) = E|x2+k(t)− x2(t)|2 ≤ C6

∫ T

t

κ(E|x1+k(s)− x1(s)|2)ds

=
∫ T

t

κ̄(ϕ̃1,k(s))ds ≤
∫ T

t

κ̄(ϕ1(s))ds = ϕ2(t).

But by (4.10), we also have

ϕ2(t) =
∫ T

t

κ̄(C7(T − s))ds ≤
∫ T

t

C7ds = C7(T − t) = ϕ1(t).

In other words, we have already shown that

ϕ̃2,k(t) ≤ ϕ2(t) ≤ ϕ1(t) if t ∈ [T1, T ],
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i.e. (4.11) holds also for n = 2. We now assume that (4.11) holds for some
n ≥ 2. Then by Lemma 4.3 again,

ϕ̃n+1,k(t) ≤
∫ T

t

κ̄(ϕ̃n,k(s))ds ≤
∫ T

t

κ̄(ϕn(s))ds = ϕn+1(t)

≤
∫ T

t

κ̄(ϕn−1(s))ds = ϕn(t),

that is, (4.11) holds for n + 1 as well. By induction, (4.11) must therefore hold
for all n ≥ 1. The proof is complete.

At last we can begin to prove the main result Theorem 4.1

Proof of Theorem 4.1. Existence: We first prove the existence of a solution.
This will be done by four steps. In the following proof please bear in mind that
the constants C1–C7 as well as T1 have already been defined above.

Step 1. We claim that

sup
T1≤t≤T

E|xn(t)− xi(t)|2 → 0 as n, i →∞. (4.12)

In fact, note that for each n ≥ 1, ϕn(t) is continuous and decreasing on [T1, T ]
and, by Lemma 4.5, for each t, ϕn(t) is non-increasing monotonically as n →∞.
Therefore we can define function ϕ(t) on [T1, T ] by ϕn(t) ↓ ϕ(t). It is easy to
verify that ϕ(t) is continuous and non-increasing on [T1, T ]. By the definition of
ϕn(t) and ϕ(t), we see that

ϕ(t) = lim
n→∞

ϕn+1(t) = lim
n→∞

∫ T

t

κ̄(ϕn(s))ds =
∫ T

t

κ̄(ϕ(s))ds, t ∈ [T1, T ].

Hence for any ε > 0,

ϕ(t) ≤ ε +
∫ T

t

κ̄(ϕ(s))ds, t ∈ [T1, T ].

Applying the Bihari inequality (i.e. Theorem 1.8.2), we obtain that

ϕ(t) ≤ G−1
(
G(ε) + T − t

)
≤ G−1

(
G(ε) + T − T1

)
, t ∈ [T1, T ], (4.13)

where
G(r) =

∫ r

1

du

κ̄(u)
on r > 0

and G−1(·) is the inverse function of G. By condition (4.3) and the definition of
κ̄(·), we have ∫

0+

du

κ̄(u)
= ∞,
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which implies

lim
ε→0

G(ε) = −∞ and then lim
ε→0

G−1
(
G(ε) + T − T1

)
= 0.

Therefore, by letting ε → 0 in (4.13), we obtain that

ϕ(t) = 0 for all t ∈ [T1, T ].

In particular, we see that ϕn(T1) ↓ ϕ(T1) = 0 as n → ∞. So for any ε > 0, we
can find an integer N ≥ 1 such that ϕn(T1) < ε whenever n ≥ N . Now for any
k ≥ 1 and n ≥ N , by Lemma 4.5, we have that

sup
T1≤t≤T

E|xn+k(t)− xn(t)|2 = sup
T1≤t≤T

ϕ̃n,k(t)

≤ sup
T1≤t≤T

ϕn(t) = ϕn(T1) < ε,

and (4.12) must therefore hold.
Step 2. Define

T2 = inf
{
s ∈ [0, T ] : sup

s≤t≤T
E|xn(t)− xi(t)|2 → 0 as n, i →∞

}
.

We see immediately from Step 1 that 0 ≤ T2 ≤ T1 < T . In this step we shall
show that

sup
T2≤t≤T

E|xn(t)− xi(t)|2 → 0 as n, i →∞. (4.14)

Let ε > 0 be arbitrary. Choose δ ∈ (0, T − T2) for

C6κ(4C1)δ <
ε

2
. (4.15)

Since κ(0) = 0, we can find a constant θ ∈ (0, ε) such that

TC6κ(θ) <
ε

2
. (4.16)

By the definition of T2 we observe that for a sufficiently large N ,

E|xn(t)− xi(t)|2 < θ for t ∈ [T2 + δ, T ] if n, i ≥ N . (4.17)

Now let n, i ≥ N+1. By Lemmas 4.3 and 4.2 as well as inequalities (4.15)–(4.17),
we can derive that if T2 ≤ t ≤ T2 + δ,

E|xn(t)− xi(t)|2 ≤ C6

∫ T2+δ

T2

κ(E|xn−1(s)− xi−1(s)|2)ds

+ C6

∫ T

T2+δ

κ(E|xn−1(s)− xi−1(s)|2)ds ≤ C6κ(4C1)δ + TC6κ(θ) < ε.
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This, together with (4.17) and θ < ε, yields

sup
T2≤t≤T

E|xn(t)− xi(t)|2 < ε whenever n, i ≥ N + 1.

That is, (4.14) holds.
Step 3. In this step, we shall show that T2 = 0. Assume otherwise that

T2 > 0. By step 2, we can choose a sequence of numbers {ai}i≥1 such that ai ↓ 0
as i →∞ and

sup
T2≤t≤T

E|xn(t)− xi(t)|2 ≤ ai whenever n > i ≥ 1. (4.18)

If 0 ≤ t ≤ T2 and n > i ≥ 2, by Lemmas 4.3 and 4.2 together with (4.18), we
derive that

E|xn(t)− xi(t)|2 ≤ C6

∫ T

t

κ(E|xn−1(s)− xi−1(s)|2)ds

≤ TC6κ(ai−1) + C6

∫ T2

t

κ(E|xn−1(s)− xi−1(s)|2)ds

≤ TC6κ(ai−1) + C6κ(4C1)(T2 − t). (4.19)

We shall now show an assertion which is similar to Lemma 4.5. In order to state
the assertion, we need introduce some new notations. Choose a positive number
δ ∈ (0, T2) and a positive integer j ≥ 1 for

TC6κ(aj) + C6κ(4C1)δ ≤ 4C1. (4.20)

Define a sequence of functions {φk(t)}k≥1 on T2 − δ ≤ t ≤ T2 by:

φ1(t) = TC6κ(aj) + C6κ(4C1)(T2 − t),

φk+1(t) = TC6κ(aj+k) + C6

∫ T2

t

κ(φk(s))ds, k ≥ 1.

Fix l ≥ 1 arbitrarily and define a sequence of functions {φ̃k,l(t)}k≥1 by

φ̃k,l(t) = E|xl+j+k(t)− xj+k(t)|2, T2 − δ ≤ t ≤ T2.

We claim that

φ̃k,l(t) ≤ φk(t) ≤ φk−1(t) ≤ · · · ≤ φ1(t), T2 − δ ≤ t ≤ T2. (4.21)

In fact, it follows from (4.19) that

φ̃1,l(t) = E|xl+j+1(t)− xj+1(t)|2

≤ TC6κ(aj) + C6κ(4C1)(T2 − t) = φ1(t),
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this is (4.21) holds for k = 1. Then, by (4.19) and (4.20), we derive that

φ̃2,l(t) = E|xl+j+2(t)− xj+2(t)|2

≤ TC6κ(aj+1) + C6

∫ T2

t

κ(E|xl+j+1(s)− xj+1(s)|2)ds

= TC6κ(aj+1) + C6

∫ T2

t

κ(φ̃1,l(s))ds

≤ TC6κ(aj+1) + C6

∫ T2

t

κ(φ1(s))ds = φ2(t)

≤ TC6κ(aj) + C6

∫ T2

t

κ[C6κ(aj) + C6κ(4C1)(T2 − t)]ds

≤ TC6κ(aj) + C6κ(4C1)(T2 − t) = φ1(t),

In other words, we have already shown that

φ̃2,l(t) ≤ φ2(t) ≤ φ1(t) on T2 − δ ≤ t ≤ T2,

this is (4.21) holds for k = 2. Now assume that (4.21) holds for some k ≥ 2.
Then, by (4.19),

φ̃k+1,l(t) = E|xl+j+k+1(t)− xj+k+1(t)|2

≤ TC6κ(aj+k) + C6

∫ T2

t

κ(E|xl+j+k(s)− xj+k(s)|2)ds

= TC6κ(aj+k) + C6

∫ T2

t

κ(φ̃k,l(s))ds

≤ TC6κ(aj+k) + C6

∫ T2

t

κ(φk(s))ds = φk+1(t)

≤ TC6κ(aj+k−1) + C6

∫ T2

t

κ(φk−1(s))ds = φk(t),

that is, (4.21) holds for k+1 as well. So, by induction, (4.21) holds for all k ≥ 1.
Note that for each k ≥ 1, φk(t) is continuous and decreasing on [T2− δ, T2] and,
moreover, for each t, φk(t) is non-increasing monotonically as k →∞. Therefore
we can define function φ(t) on [T2 − δ, T2] by φk(t) ↓ φ(t). It is easy to verify
that φ(t) is continuous and non-increasing on [T2 − δ, T2]. By the definition of
φn(t) and φ(t) we also have that

φ(t) = lim
k→∞

φk+1(t) = lim
k→∞

[
TC6κ(aj+k) + C6

∫ T2

t

κ(φk(s))ds

]
= C6

∫ T2

t

κ(φ(s))ds on T2 − δ ≤ t ≤ T2.
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In the same way as in Step 1, we can then apply the Bihari inequality to show
that

φ(t) = 0 on T2 − δ ≤ t ≤ T2.

In particular, we see that φk(T2 − δ) ↓= φ(T2 − δ)0 as k → ∞. Hence, for any
ε > 0, we can find an integer k0 ≥ 1 such that φk(T2 − δ) < ε whenever k ≥ k0.
It then follows from (4.21) that

sup
T2−δ≤t≤T2

E|xl+j+k(t)− xj+k(t)|2 ≤ φk(T2 − δ) < ε (4.22)

whenever k ≥ k0. Since l ≥ 1 is arbitrary and k0 is independent of l, (4.22)
means that

sup
T2−δ≤t≤T2

E|xn(t)− xi(t)|2 → 0 as n, i →∞.

This, together with (4.14), yields

sup
T2−δ≤t≤T

E|xn(t)− xi(t)|2 → 0 as n, i →∞.

But this is in contradiction with the definition of T2. So we must have T2 = 0.
In other words, we have already shown that

sup
0≤t≤T

E|xn(t)− xi(t)|2 → 0 as n, i →∞. (4.23)

Step 4. Applying (4.23) to (4.9) we see that {xn(·)} is a Cauchy sequence
in M2([0, T ];Rd) and {yn(·)} is a Cauchy sequence in M2([0, T ];Rd×m). Define
their limits by x(·) and y(·), respectively. Letting n → ∞ in (4.5) we finally
obtain

x(t) +
∫ T

t

f(x(s), y(s), s)ds +
∫ T

t

[g(x(s), x) + y(s)]dB(s) = X

on 0 ≤ t ≤ T . The existence of the solution has been proved.
Uniqueness: To show the uniqueness, let {x(·), y(·)} and {x̄(·), ȳ(·)} be two

solutions of equation (3.1). Then, in the same way as in the proof of Lemma
4.2, we can show that

E|x(t)− x̄(t)|2 +
1
2
E

∫ T

t

|y(s)− ȳ(s)|2ds

≤ 2
[
4K + 2 +

1
4K + 2

]
×

∫ T

t

[E|x(s)− x̄(s)|2 + κ(E|x(s)− x̄(s)|2)]ds (4.24)
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for 0 ≤ t ≤ T . Since κ(·) is a concave function with κ(0) = 0, we have

κ(u) ≥ κ(1)u for 0 ≤ u ≤ 1.

So ∫
0+

du

u + κ(u)
≥ κ(1)

κ(1) + 1

∫
0+

du

κ(u)
= ∞.

Therefore we can apply the Bihari inequality to (4.24) to obtain that

E|x(t)− x̄(t)|2 = 0 for all 0 ≤ t ≤ T.

This implies immediately that x(t) = x̄(t) for all 0 ≤ t ≤ T almost surely. It
then follows from (4.23) that

E

∫ T

0

|y(s)− ȳ(s)|2ds = 0.

The uniqueness has also been proved and the proof of the theorem is therefore
complete.

7.5 REGULARITIES

In the previous sections, we observed clearly that the second moment of of
the solution to the backward stochastic differential equation (3.1) is finite. In
this section, we shall discuss the higher order moments of the solution. For this
purpose, we impose the following hypotheses: Let p ≥ 2. Assume that

f(0, 0, ·) ∈Mp([0, T ];Rd) and g(0, ·) ∈Mp([0, T ];Rd×m). (5.1)

Assume also that there exists a positive constant K > 0 such that

|f(x, y, t)− f(0, 0, t)|2 ≤ K(1 + |x|2 + |y|2) a.s. (5.2)

and
|g(x, t)− g(0, t)|2 ≤ K(1 + |x|2) a.s (5.3)

for all x ∈ Rd, y ∈ Rd×m and t ∈ [0, T ]. Obviously, (3.4) and (3.5) imply (5.2)
and (5.3), respectively. It is also not difficult to see that (4.1) and (4.2) imply
(5.2) and (5.3), respectively. For example, making use of (4.4), we derive from
(4.1) that

|f(x, y, t)− f(0, 0, t)|2 ≤ a + b|x|2 + K|y|2 ≤ (a ∨ b ∨K)(1 + |x|2 + |y|2).

In other words, hypotheses (5.2) and (5.3) follow usually from the conditions
imposed for the existence and uniqueness of the solution. Moreover, (5.1) reduces
to (3.3) if p = 2 but we naturally require (5.1) when discuss the pth moment.
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Theorem 5.1 Let p ≥ 2 and X ∈ Lp
FT

(Ω; Rd). Let (5.1)–(5.3) hold. Then the
solution of equation (3.1) has the properties that

E|x(t)|p ≤ (E|X|p + C̄1)e2pT (4K+1) for all 0 ≤ t ≤ T (5.4)

and

E

∫ T

0

|x(t)|p−2|y(t)|2dt ≤ 4
p
(E|X|p + C̄1)

[
1 + e2pT (4K+1)

]
, (5.5)

where

C̄1 =
2
p
E

∫ T

0

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

] p
2

ds < ∞.

Proof. By Itô’s formula, we have that

|X|p − |x(t)|p = p

∫ T

t

|x(s)|p−2xT (s)f(x(s), y(s), s)ds

+
p

2

∫ T

t

|x(s)|p−2|g(x(s), s) + y(s)|2ds

+
p(p− 2)

2

∫ T

t

|x(s)|p−4|xT (s)[g(x(s), s) + y(s)]|2ds

+ p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s).

This implies that

|x(t)|p +
p

2

∫ T

t

|x(s)|p−2|y(s)|2ds

≤ |X|p − p

∫ T

t

|x(s)|p−2xT (s)f(x(s), y(s), s)ds

− p

∫ T

t

|x(s)|p−2trace[gT (x(s), s)y(s)]ds

− p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s). (5.6)

Taking expectation on both sides we obtain that

E|x(t)|p +
p

2
E

∫ T

t

|x(s)|p−2|y(s)|2ds

≤ E|X|p − pE

∫ T

t

|x(s)|p−2xT (s)f(x(s), y(s), s)ds

− pE

∫ T

t

|x(s)|p−2trace[gT (x(s), s)y(s)]ds. (5.7)
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By condition (5.2), we have that

|f(x(s), y(s), s)|2 ≤ 2|f(0, 0, s)|2 + 2|f(x(s), y(s), s)− f(0, 0, s)|2

≤ 2|f(0, 0, s)|2 + 2K(1 + |x(s)|2 + |y(s)|2).

We then estimate that

− pxT (s)f(x(s), y(s), s)

≤ 4pK|x(s)|2 +
p

16K
|f(x(s), y(s), s)|2

≤ p

8K
(|f(0, 0, s)|2 + K) + p(4K + 1)|x(s)|2 +

p

8
|y(s)|2. (5.8)

Similarly, we can use condition (5.3) to show that

− p trace[gT (x(s), s)y(s)]

≤ 4p(|g(0, s)|2 + K) + 4pK|x(s)|2 +
p

8
|y(s)|2. (5.9)

Substituting (5.8) and (5.9) into (5.7) yields that

E|x(t)|p +
p

2
E

∫ T

t

|x(s)|p−2|y(s)|2ds

≤ E|X|p + p(8K + 1)E
∫ T

t

|x(s)|pds +
p

4
E

∫ T

t

|x(s)|p−2|y(s)|2ds

+ E

∫ T

t

|x(s)|p−2

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

]
ds. (5.10)

On the other hand, using the elementary inequality uαv1−α ≤ αu + (1−α)v for
α ∈ [0, 1] and u, v ≥ 0, we derive that

E

∫ T

t

|x(s)|p−2

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

]
ds

≤ p− 2
p

E

∫ T

t

|x(s)|pds

+
2
p
E

∫ T

t

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

] p
2

ds

≤ E

∫ T

t

|x(s)|pds + C̄1, (5.11)

where C̄1 has been defined in the statement of the theorem and, by condition
(5.1), C̄1 < ∞. Substituting (5.11) into (5.10) we get that

E|x(t)|p +
p

2
E

∫ T

t

|x(s)|p−2|y(s)|2ds

≤ E|X|p + C̄1 + 2p(4K + 1)
∫ T

t

E|x(s)|pds

+
p

4
E

∫ T

t

|x(s)|p−2|y(s)|2ds. (5.12)
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In particular, this gives that

E|x(t)|p ≤ E|X|p + C̄1 + 2p(4K + 1)
∫ T

t

E|x(s)|pds.

The Gronwall inequality now implies that

E|x(t)|p ≤ (E|X|p + C̄1)e2p(4K+1)(T−t) for all 0 ≤ t ≤ T, (5.13)

and the required assertion (5.4) follows. Finally, we derive from (5.12) and (5.13)
that

E

∫ T

0

|x(s)|p−2|y(s)|2ds

≤ 4
p
(E|X|p + C̄1) + 8(4K + 1)

∫ T

0

E|x(s)|pds

≤ (E|X|p + C̄1)
[
4
p

+ 8(4K + 1)
∫ T

0

e2p(4K+1)(T−s)ds

]
≤ 4

p
(E|X|p + C̄1)

[
1 + e2pT (4K+1)

]
,

which is the required assertion (5.5). The proof is complete.

Theorem 5.2 Let p ≥ 2 and X ∈ Lp
FT

(Ω; Rd). Let (5.1)–(5.3) hold. Then the
solution of equation (3.1) has the properties that

E

(
sup

0≤t≤T
|x(t)|p

)
< ∞ (5.14)

and

E

(∫ T

0

|y(t)|2dt

) p
2

< ∞. (5.15)

Proof. Substituting (5.8) and (5.9) into (5.6) yields that

|x(t)|p +
p

2

∫ T

t

|x(s)|p−2|y(s)|2ds

≤ |X|p + p(8K + 1)
∫ T

t

|x(s)|pds +
p

4

∫ T

t

|x(s)|p−2|y(s)|2ds

+
∫ T

t

|x(s)|p−2

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

]
ds

− p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s).
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Hence

E

(
sup

0≤t≤T
|x(t)|p

)
≤ E|X|p + p(8K + 1)

∫ T

0

E|x(s)|pds

+ E

∫ T

0

|x(s)|p−2

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

]
ds

+ E

(
sup

0≤t≤T

[
−p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)
])

. (5.16)

But, letting t = 0 in (5.11), we see that

E

∫ T

0

|x(s)|p−2

[
p

8K
(|f(0, 0, s)|2 + K) + 4p(|g(0, s)|2 + K)

]
ds

≤
∫ T

0

E|x(s)|pds + C̄1.

Substituting this into (5.16) we obtain that

E

(
sup

0≤t≤T
|x(t)|p

)
≤ C̄1 + E|X|p + [p(8K + 1) + 1]

∫ T

0

E|x(s)|pds

+ E

(
sup

0≤t≤T

[
−p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)
])

. (5.17)

On the other hand, by the Burkholder–Davis–Gundy inequality etc., we can
derive that

E

(
sup

0≤t≤T

[
−p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)
])

= E

(
sup

0≤t≤T

[
−p

∫ T

0

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)

+ p

∫ t

0

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)
])

= pE

(
sup

0≤t≤T

∫ t

0

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)
)

≤ 4
√

2pE

(∫ T

0

|x(s)|2p−2|g(x(s), s) + y(s)|2ds

) 1
2

≤ 4
√

2pE

([
sup

0≤s≤T
|x(s)|p

] ∫ T

0

|x(s)|p−2|g(x(s), s) + y(s)|2ds

) 1
2
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≤ 1
2
E

(
sup

0≤s≤T
|x(s)|p

)
+ 16p2E

∫ T

0

|x(s)|p−2|g(x(s), s) + y(s)|2ds

≤ 1
2
E

(
sup

0≤s≤T
|x(s)|p

)
+ 32p2E

∫ T

0

|x(s)|p−2|y(s)|2ds

+ 32p2E

∫ T

0

|x(s)|p−2|g(x(s), s)|2ds. (5.18)

However, in the same way as in the proof of Theorem 5.1, we can estimate that

E

∫ T

0

|x(s)|p−2|g(x(s), s)|2ds

≤ E

∫ T

0

|x(s)|p−2
[
2|g(0, s)|2 + 2K(1 + |x(s)|2)

]
ds

≤
(
2K +

p− 2
p

)
E

∫ T

0

|x(s)|pds +
2
p
E

∫ T

0

[
2|g(0, s)|2 + 2K

] p
2 ds

≤ (2K + 1)
∫ T

0

E|x(s)|pds + C̄1.

Substituting this into (5.18) gives that

E

(
sup

0≤t≤T

[
−p

∫ T

t

|x(s)|p−2xT (s)[g(x(s), s) + y(s)]dB(s)
])

≤ 1
2
E

(
sup

0≤s≤T
|x(s)|p

)
+ 32p2E

∫ T

0

|x(s)|p−2|y(s)|2ds

+ 32p2(2K + 1)
∫ T

0

E|x(s)|pds + 32p2C̄1. (5.19)

Substituting (5.19) into (5.17) we obtain that

E

(
sup

0≤t≤T
|x(t)|p

)
≤ 2C̄1(1 + 32p2) + 2E|X|p

+ 2
[
32p2(2K + 1) + p(8K + 1) + 1

] ∫ T

0

E|x(s)|pds

+ 64p2E

∫ T

0

|x(s)|p−2|y(s)|2ds

:= C̄2. (5.20)

But by Theorem 5.1, C̄2 < ∞ and hence the required assertion (5.14) follows.
We now begin to show (5.15). Clearly, (5.15) holds if we can show that

E

(∫ v

u

|y(s)|2ds

) p
2

< ∞ (5.21)
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for any 0 ≤ u < v ≤ T satisfying

cp > 3p−1[4K(v − u)]
p
2 , (5.22)

where cp = 1 or (2p)−p/2 according to p = 2 or p > 2, respectively. Fix such u
and v arbitrarily. For u ≤ t ≤ v, we have∫ t

u

y(s)dB(s) = x(t)− x(u)−
∫ t

u

f(x(s), y(s), s)ds−
∫ t

u

g(x(s), s)dB(s).

Hence

E

(
sup

u≤t≤v

∣∣∣∫ t

u

y(s)dB(s)
∣∣∣p) ≤ 3p−1E

(
sup

u≤t≤v
|x(t)− x(u)|p

)
+ 3p−1E

(∫ v

u

|f(x(s), y(s), s)|ds

)p

+ 3p−1E

(
sup

u≤t≤v

∣∣∣∫ t

u

g(x(s), s)dB(s)
∣∣∣p). (5.23)

Note from (5.20) that

E

(
sup

u≤t≤v
|x(t)− x(u)|p

)
≤ 2pE

(
sup

u≤t≤v
|x(t)|p

)
≤ 2pC̄2 < ∞. (5.24)

Also, by the Burkholder–Davis–Gundy inequality etc., we derive that

E

(
sup

u≤t≤v

∣∣∣∫ t

u

g(x(s), s)dB(s)
∣∣∣p)

≤ CpE

(∫ v

u

|g(x(s), s)|2ds

) p
2

≤ Cp(v − u)
p−2
2 E

∫ v

u

[
2|g(0, s)|2 + 2K(1 + |x(s)|2)

] p
2
ds

≤ Cp6
p
2 (v − u)

p−2
2 E

∫ v

u

[
|g(0, s)|p + K

p
2 + K

p
2 |x(s)|p

]
ds

< ∞, (5.25)

where Cp is the constant given by the Burkholder–Davis–Gundy inequality, that
is Cp = 4 or

[
pp+1/2(p − 1)p−1

]p/2 according to p = 2 or p > 2, respectively.
Moreover, we have that

E

(∫ v

u

|f(x(s), y(s), s)|ds

)p

≤ E

(
(v − u)

∫ v

u

|f(x(s), y(s), s)|2ds

) p
2

≤ (v − u)
p
2 E

(∫ v

u

[
2|f(0, 0, s)|2 + 2K(1 + |x(s)|2 + |y(s)|2)

]
ds

) p
2

≤ C̄3 + [4K(v − u)]
p
2 E

(∫ v

u

|y(s)|2ds

) p
2

, (5.26)
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where

C̄3 = [2(v − u)]
p
2 E

(∫ v

u

[
2|f(0, 0, s)|2 + 2K(1 + |x(s)|2)

]
ds

) p
2

≤ 2p(v − u)p−1E

∫ v

u

[
|f(0, 0, s)|2 + K + K|x(s)|2)

] p
2
ds

≤ 6p(v − u)p−1E

∫ v

u

[
|f(0, 0, s)|p + K

p
2 + K

p
2 |x(s)|p

]
ds

< ∞.

On the other hand, by the Burkholder–Davis–Gundy inequality, we have that

cpE

(∫ v

u

|y(s)|2ds

) p
2

≤ E

(
sup

u≤t≤v

∣∣∣∫ t

u

y(s)dB(s)
∣∣∣p), (5.27)

where cp has been defined above. Combining (5.23)–(5.27) yields that

(
cp − 3p−1[4K(v − u)]

p
2

)
E

(∫ v

u

|y(s)|2ds

) p
2

< ∞.

Finally, making use of (5.22), we obtain (5.21) and therefore the proof is com-
plete.

7.6 BSDE AND QUASILINEAR PDE

In Section 2.8, we established the Feynman–Kac formula which gives the
explicit representation for the solution to a linear partial differential equation
in terms of the solutions of the corresponding stochastic differential equations.
However, we also pointed out there that for a solution of a quasilinear partial
differential equation, the stochastic representation is not explicit. For exam-
ple, let us recall the quasilinear parabolic partial differential equation (2.8.27),
namely {

∂
∂tu(x, t) + Lu(x, t) + c(x, u)u(x, t) = 0 in Rd × [0, T ),
u(x, T ) = φ(x) in Rd.

(6.1)

Here

L =
1
2

d∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
+

d∑
i=1

fi(x, t)
∂

∂xi
,

aij(x, t), fi(x, t) and c(x, u) are all the same as defined in Section 2.8. Moreover,
set

f(x, t) = (f1, · · · , fd)T and a(x, t) = (aij(x, t))d×d.

Let g(x, t) = (gij(x, t))d×d be the square root of a(x, t), i.e.

g(x, t)gT (x, t) = a(x, t).
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Let B(t) be a d-dimensional Brownian motion. For every (x, t) ∈ Rd × [0, T ),
solve the stochastic differential equation{

dξx,t(s) = f(ξx,t(s), s)ds + g(ξx,t(s), s)dB(s), t ≤ s ≤ T,

ξx,t(t) = x.
(6.2)

The Feynman–Kac formula tells us that the solution of equation (6.1) can be
expressed as

u(x, t) = E

[
φ(ξx,t(T )) exp

(∫ T

t

c(ξx,t(s), u(ξx,t(s), s))ds
)]

. (6.3)

Of course, this is no longer an explicit representation. However, in this section,
we shall establish an explicit representation in terms of the solutions of the
corresponding backward stochastic differetial equations.

In general, let us consider the quasilinear parabolic partial differential equa-
tion {

∂
∂tu(x, t) + Lu(x, t) + F (x, u,∇ug, t) = 0 in Rd × [0, T ),
u(x, T ) = φ(x) in Rd.

(6.4)

Here F is a real-valued function defined on Rd ×R×Rd × [0, T ] and ∇u is the
gradient of u, i.e.

∇u =
( ∂u

∂x1
, · · · , ∂u

∂xd

)
.

For every (x, t) ∈ Rd × [0, T ), let ξx,t(s), t ≤ s ≤ T be the solution of stochas-
tic differential equation (6.2). Consider the corresponding backward stochastic
differential equation

Xx,t(s) = φ(ξx,t(T )) +
∫ T

s

F (ξx,t(r), Xx,t(r), Yx,t(r), r)dr

−
∫ T

s

Yx,t(r)dB(r) on t ≤ s ≤ T, (6.5)

where Xx,t(·) takes values in R but Yx,t(·) in R1×d. The following theorem is
called the generalized Feynman–Kac formula and is due to Pardoux & Peng
(1992).

Theorem 6.1 Assume that all the functions a, f, g, F, φ are sufficiently smooth
so that equation (6.4) has a unique C2,1-solution and equations (6.2) and (6.5)
have their own unique solutions as well. Then the unique solution of equation
(6.4) can be represented as

u(x, t) = EXx,t(t). (6.6)
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Proof. Applying the Itô formula to u(ξx,t(r), r) we have that

du(ξx,t(r), r) =
[

∂

∂t
u(ξx,t(r), r) + Lu(ξx,t(r), r)

]
dr

+∇u(ξx,t(r), r)g(ξx,t(r), r)dB(r).

Since u(x, t) is the solution of equation (6.4), we see that

du(ξx,t(r), r) = −F
(
ξx,t(r), u(ξx,t(r), r),∇u(ξx,t(r), r)g(ξx,t(r), r), r

)
dr

+∇u(ξx,t(r), r)g(ξx,t(r), r)dB(r).

Integrating both sides from r = s to r = T implies that

u(ξx,t(T ), T )− u(ξx,t(s), s)

= −
∫ T

s

F
(
ξx,t(r), u(ξx,t(r), r),∇u(ξx,t(r), r)g(ξx,t(r), r), r

)
dr

+
∫ T

s

∇u(ξx,t(r), r)g(ξx,t(r), r)dB(r).

Noting that u(x, T ) = φ(x), we obtain that

u(ξx,t(s), s) = φ(ξx,t(T ))

=
∫ T

s

F
(
ξx,t(r), u(ξx,t(r), r),∇u(ξx,t(r), r)g(ξx,t(r), r), r

)
dr

−
∫ T

s

∇u(ξx,t(r), r)g(ξx,t(r), r)dB(r). (6.7)

Comparing equation (6.7) with equation (6.5), we see, by the uniqueness, that
{u(ξx,t(s), s),∇u(ξx,t(s), s)g(ξx,t(s), s)}t≤s≤T must coincide with the unique so-
lution {Xx,t(s), Yx,t(s)}t≤s≤T of equation (6.5). In particular, we have that

u(x, t) = u(ξx,t(t), t) = Xx,t(t) a.s.

Taking expectation on both sides and bearing in mind that u(x, t) is determin-
istic, we obtain the required assertion (6.6). The proof is complete.

To show that Theorem 6.1 is a generalization of the Feynman–Kac formula,
let F (x, u, y, t) = c(x, t)u. In this case, equation (6.4) reduces to the linear
equation {

∂
∂tu(x, t) + Lu(x, t) + c(x, t)u(x, t) = 0 in Rd × [0, T ),
u(x, T ) = φ(x) in Rd.

(6.8)

Moreover, the backward stochastic differential equation (6.5) becomes

Xx,t(s) = φ(ξx,t(T )) +
∫ T

s

c(ξx,t(r), r)Xx,t(r)dr −
∫ T

s

Yx,t(r)dB(r). (6.9)
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Note that equation (6.9) has the explicit solution

Xx,t(s) = φ(ξx,t(T ))exp

[∫ T

s

c(ξx,t(r), r)dr

]
−

∫ T

s

exp

[∫ r

s

c(ξx,t(v), v)dv

]
Yx,t(r)dB(r)

Substituting this into (6.6) gives

u(x, t) = EXx,t(t) = E

(
φ(ξx,t(T ))exp

[∫ T

t

c(ξx,t(r), r)dr

])
,

but this is the same as the classical Feynman–Kac formula obtained in Section
2.8.



8Stohasti Osillators
8.1 INTRODUCTION

A stochastic oscillator is described mathematically as the solution of an appro-
priate ordinary differential equation, which is driven by an external disturbance
of white noise. Accordingly, such solutions are stochastic processes.

In this chapter, we shall mainly discuss the stochastic oscillators described
by the d-dimensional second order stochastic differential equations of the form

ẍ(t) + f(x(t), ẋ(t), t) = g(x(t), ẋ(t), t)Ḃ(t) on t ≥ 0, (1.1)

where Ḃ(t) is an m-dimensional white noise, x(t) takes values in Rd, f : Rd ×
Rd × R+ → Rd and g : Rd × Rd × R+ → Rd×m. Introducing the new variable
y(t) = ẋ(t), we can write equation (1.1) as the 2d-dimensional Itô equation

{

dx(t) = y(t)dt,

dy(t) = −f(x(t), y(t), t)dt + g(x(t), y(t), t)dB(t).
(1.2)

Clearly, this is a special Itô stochastic differential equation in the sense that
x(t) and y(t) have the simple relation dx(t) = y(t)dt which does not involve
stochastic differential. It is this special form that makes the equation have a
number of important properties. In this chapter, we shall discuss some of these
properties, e.g. the oscillations, the statistical distribution of their zeros and the
energy bounds.

The materials in this chapter are mainly based on Markus & Weerasinghe
(1988) and Mao & Markus (1991), except the Cameron–Martin–Girsanov trans-
formation theorem which is classical.
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8.2 THE CAMERON–MARTIN-GIRSANOV THEOREM

In this section, we shall present the well-known Cameron–Martin–Girsanov
transformation theorem of Brownian motions, which will play an important role
in this chapter.

As usual, let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a

filtration {Ft} satisfying the usual conditions. If P̃ is a measure on (Ω,F) given
by

P̃ (A) =

∫

A

f(ω)dP (ω), A ∈ F ,

we then write dP̃ (ω) = f(ω)dP (ω).

Theorem 2.1 (The Cameron–Martin–Girsanov Theorem) Assume that
{B(t)}0≤t≤T is an m-dimensional Brownian motion defined on the probability
space (Ω,F , {Ft}t≥0, P ). Let φ = (φ1, · · · , φm)T ∈ L2([0, T ]; Rm). Define

ζT
0 = −1

2

∫ T

0

|φ(u)|2du +

∫ T

0

φT (u)dB(u), (2.1)

B̃(t) = B(t) −
∫ t

0

φ(u)du, (2.2)

dP̃ (ω) = exp
[

ζT
0 (φ)

]

dP (ω). (2.3)

If
P̃ (Ω) = 1, (2.4)

then {B̃(t)}0≤t≤T is a new m-dimensional Brownian motion defined on the prob-

ability space (Ω,F , P̃ ) with respect to the same filtration {Ft}. Moreover, a suf-
ficient condition for (2.4) to hold is that there are two positive constants µ and
C such that

E
[

eµ|φ(t)|2
]

≤ C for all 0 ≤ t ≤ T. (2.5)

The proof of the Cameron–Martin–Girsanov theorem is omitted here since
it can be found in many texts e.g. Friedman (1975). Instead, we shall explain
how this theorem can be used to transform a complicated Itô equation into a
relatively easier one without loss of certain properties.

Let P̃ (Ω) = 1. If g ∈ L2([0, T ]; Rd×m), then, by definition,

P

{

ω :

∫ T

0

|g(t, ω)|2dt < ∞
}

= 1.

Since P̃ is absolutely continuous with respect to P ,

P̃

{

ω :

∫ T

0

|g(t, ω)|2dt < ∞
}

= 1.
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Hence the stochastic integral of g with respect to B̃

∫ t

0

g(s)dB̃(s) on 0 ≤ t ≤ T

is well defined. Let {gk} be a sequence of simple processes in L2([0, T ]; Rd×m)
such that

∫ T

0

|gk(s) − g(s)|2ds → 0 P−a.s.

Then
∫ T

0

|gk(s) − g(s)|2ds → 0 P̃−a.s.

Consequently

∫ t

0

gk(s)dB(s) →
∫ t

0

g(s)dB(s) in probability P,

and
∫ t

0

gk(s)dB̃(s) →
∫ t

0

g(s)dB̃(s) in probability P̃ .

Therefore, for a subsequence {k′},
∫ t

0

gk′(s)dB(s) →
∫ t

0

g(s)dB(s) P−a.s. (2.6)

and
∫ t

0

gk′(s)dB̃(s) →
∫ t

0

g(s)dB̃(s) P̃−a.s. (2.7)

From (2.2) we easily see that

∫ t

0

gk′(s)dB(s) =

∫ t

0

gk′(s)dB̃(s) +

∫ t

0

gk′(s)φ(s)ds. (2.8)

It is also clear that

∫ t

0

gk′(s)φ(s)ds →
∫ t

0

g(s)φ(s)ds.

Hence, taking k′ → ∞ in (2.8) and using (2.6) and (2.7), we get

∫ t

0

g(s)dB(s) =

∫ t

0

g(s)dB̃(s) +

∫ t

0

g(s)φ(s)ds (2.9)

almost surely in P (or in P̃ ). This equality along with Theorem 2.1 yields the
following result, which is known as the Girsanov theorem.
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Theorem 2.2 (The Girsanov Theorem) Let {B(t)}0≤t≤T be an m-dimensio-
nal Brownian motion defined on the probability space (Ω,F , {Ft}t≥0, P ). Let x(t)
be a d-dimensional Itô process on [0, T ], namely

x(t) = x(0) +

∫ t

0

f(s)ds +

∫ t

0

g(s)dB(s) (2.10)

with f ∈ L2([0, T ]; Rd) and g ∈ L2([0, T ]; Rd×m). Let φ = (φ1, · · · , φm) ∈
L2([0, T ]; Rm). Let B̃(t) and P̃ be the same as defined in Theorem 2.1. If
P̃ (Ω) = 1, then x(t) is still an Itô process on the probability space (Ω,F , P̃ ) with
respect to the Brownian motion B̃(t). More precisely, we have

x(t) = x(0) +

∫ t

0

[f(s) + g(s)φ(s)]ds +

∫ t

0

g(s)dB̃(s). (2.11)

If x(t) is the solution to the stochastic differential equation

dx(t) = f(x(t), t)dt + g(x(t), t)dB(t), 0 ≤ t ≤ T (2.12)

on the probability space (Ω,F , P ), then the Girsanov theorem tells us that x(t)
is the solution to the following new equation

dx(t) = [f(x(t), t) + g(x(t), t)φ(t)]dt + g(x(t), t)dB̃(t), 0 ≤ t ≤ T (2.13)

on the probability space (Ω,F , P̃ ). In many situations, we can choose φ(t) to
make the term f(x, t)+ g(x, t)φ(t) relatively simpler so that equation (2.13) can
be dealt with much more easily than the original equation (2.12). For example,
if d = m and g(x, t) is invertible, and both f(x, t) and g−1(x, t) are bounded, we
can let

φ(t) = −g−1(x(t), t)f(x(t), t).

In this case, (2.5) is fulfilled due to the boundedness of φ(t) and so P̃ (Ω) = 1.
Moreover, equation (2.13) reduces to

dx(t) = g(x(t), t)dB̃(t), 0 ≤ t ≤ T

and this is clearly much simpler than equation (2.12).

8.3 NONLINEAR STOCHASTIC OSCILLATORS

Let B(t) be a 1-dimensional Brownian motion. Consider the scalar nonlin-
ear oscillator

ẍ(t) + κ(x(t), ẋ(t), t) = hḂ(t) on t ≥ 0, (3.1)
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where h is a positive constant and κ is a real function on R2×R+. By introducing
the new variable y(t) = ẋ(t), the corresponding Itô equation is

d

[

x(t)
y(t)

]

=

[

y(t)
−κ(x(t), y(t), t)

]

dt +

[

0
h

]

dB(t). (3.1)′

We shall assume that κ(x, y, t) is locally Lipschitz continuous in (x, y) and is
bounded on the whole domain R2 ×R+. By the theory of stochastic differential
equations, we know that for any given initial value (x0, y0) ∈ R2, equation
(3.1)′ has a unique solution on t ≥ 0. The boundedness of function κ(x, y, t) is
of course unnecessary, for example, the linear growth condition would do, but
for simplicity of further treatments we would rather impose this condition of
boundedness.

In this section we shall demonstrate that to study certain properties of equa-
tion (3.1)′, for example, the property that the solution initiating at (x0, y0) 6= 0
will almost surely miss the origin for all t ≥ 0, it is enough to study the relatively
simpler equation

d

[

x(t)
y(t)

]

=

[

y(t)
0

]

dt +

[

0
h

]

dB̃(t) (3.2)

with respect to a new Brownian motion B̃(t) of course.

Lemma 3.1 Let T > 0 and (x(t), y(t)) be a solution to the equation

d

[

x(t)
y(t)

]

=

[

y(t)
−κ(x(t), y(t), t)

]

dt +

[

0
h

]

dB(t) on 0 ≤ t ≤ T. (3.3)

Let φ(t) = h−1κ(x(t), y(t), t) for 0 ≤ t ≤ T and set

ζT
0 = −1

2

∫ T

0

|φ(u)|2du +

∫ T

0

φ(u)dB(u),

B̃(t) = B(t) −
∫ t

0

φ(u)du,

dP̃ (ω) = exp
[

ζT
0 (φ)

]

dP (ω).

Then P̃ (Ω) = 1, {B̃(t)}0≤t≤T is a one-dimensional Brownian motion on the

probability space (Ω,F , {Ft}, P̃ ), and all P -null sets are also of P̃ -null. More-
over, (x(t), y(t)) is a solution to the following equation

d

[

x(t)
y(t)

]

=

[

y(t)
0

]

dt +

[

0
h

]

dB̃(t) on 0 ≤ t ≤ T. (3.4)

Proof. The boundedness of κ(x, y, t) guarantees that condition (2.5) is fulfilled.
Hence, by the Cameron–Martin-Girsanov theorem, P̃ (Ω) = 1 and {B̃(t)}0≤t≤T
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is a one-dimensional Brownian motion on (Ω,F , P̃ ). Since P̃ is absolutely contin-
uous with respect to P , any P -null set is of P̃ -null. Moreover, by the Girsanov
theorem, (x(t), y(t)) is a solution of equation (3.4) on the probability space
(Ω,F , P̃ ).

Lemma 3.2 Let T > 0. Let (Ω,F , {Ft}, P̃ ) be a complete probability space and
{B̃(t)}0≤t≤T be a one-dimensional Brownian motion defined on the space. Let
(x(t), y(t)) be a solution of the equation

d

[

x(t)
y(t)

]

=

[

y(t)
0

]

dt +

[

0
h

]

dB̃(t) on 0 ≤ t ≤ T.

Let φ(t) = −h−1κ(x(t), y(t), t) for 0 ≤ t ≤ T and set

ζT
0 = −1

2

∫ T

0

|φ(u)|2du +

∫ T

0

φ(u)dB̃(u),

B̂(t) = B̃(t) −
∫ t

0

φ(u)du,

dP̂ (ω) = exp
[

ζT
0 (φ)

]

dP̃ (ω).

Then P̂ (Ω) = 1, {B̂(t)}0≤t≤T is a one-dimensional Brownian motion on the

probability space (Ω,F , {Ft}, P̂ ), and all P̃ -null sets are of P̂ -null as well. More-
over, (x(t), y(t)) is a solution to the following equation

d

[

x(t)
y(t)

]

=

[

y(t)
−κ(x(t), y(t), t)

]

dt +

[

0
h

]

dB̂(t) on 0 ≤ t ≤ T. (3.5)

The proof is the same as that of Lemma 3.1. Using these two lemmas, we
can obtain the following useful results.

Theorem 3.3 Let (x(t), y(t)), B̃(t) etc. be the same as defined in Lemmas 3.1
and 3.2. Let GT be the σ-algebra generated by the solution (x(t), y(t)), that is
GT = σ{(x(t), y(t)) : 0 ≤ t ≤ T }. Then for any set A ∈ GT , P (A) = 0 if and
only if P̃ (A) = 0. In consequence,

P{|x(t)|2 + |y(t)|2 = 0 for some 0 ≤ t ≤ T } = 0

if and only if

P̃{|x(t)|2 + |y(t)|2 = 0 for some 0 ≤ t ≤ T } = 0.

Proof. Comparing equation (3.3) with (3.5), we see clearly that the probability
distribution of (x(t), y(t)) under probability measure P is the same as that under
probability measure P̂ . In other words,

P (A) = P̂ (A) for all A ∈ GT .
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On the other hand, by Lemmas 3.1 and 3.2,

P (A) = 0 ⇒ P̃ (A) = 0 ⇒ P̂ (A) = 0.

Hence, for any set A ∈ GT , P (A) = 0 if and only if P̃ (A) = 0.

Theorem 3.4 Let (x(t), y(t)) be the unique solution, initiating at (x0, y0) 6= 0
in R2, for the nonlinear stochastic oscillator

ẍ(t) + κ(x(t), ẋ(t), t) = hḂ(t) on t ≥ 0

or the Itô equation

d

[

x(t)
y(t)

]

=

[

y(t)
−κ(x(t), y(t), t)

]

dt +

[

0
h

]

dB(t).

Then
P{|x(t)|2 + |y(t)|2 > 0 for all 0 ≤ t < ∞} = 1. (3.6)

Proof. Clearly, (3.6) follows if we can show that for every T > 0,

P{|x(t)|2 + |y(t)|2 > 0 for all 0 ≤ t ≤ T } = 1

or
P{|x(t)|2 + |y(t)|2 = 0 for some 0 ≤ t ≤ T } = 0.

But by Theorem 3.3, this is equivalent to

P̃{|x(t)|2 + |y(t)|2 = 0 for some 0 ≤ t ≤ T } = 0, (3.7)

where P̃ and the following B̃(t) are the same as defined in Lemma 3.1. Note
from Lemma 3.1 that (x(t), y(t)) is a solution to the equation

d

[

x(t)
y(t)

]

=

[

y(t)
0

]

dt +

[

0
h

]

dB̃(t) on 0 ≤ t ≤ T (3.8)

on the probability space (Ω,F , P̃ ). We now define a C∞-function

V (x, y) =

∫ ∞

0

p(t, x, y)dt, (3.9)

on its domain R2 − (0, 0), where

p(t, x, y) =

√
3

πt
exp

( −2

h2t3

[

t2y2 + 3txy + 3x2
]

)

. (3.10)

It is not difficult to verify that V (x, y) has the following three properties:
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(i) V (x, y) > 0,

(ii) lim|x|+|y|→0 V (x, y) = 0,

(iii) LV (x, y) ≡ 0 on the whole domain R2− (0, 0), where L is the diffusion
operator associated with equation (3.8), namely

L = y
∂

∂x
+

h2

2

∂

∂y2
.

The routine calculations verifying these properties are left to the reader as an
exercise. Define the stopping time

ρ = inf{t ≥ 0 : |x(t)|2 + |y(t)|2 = 0}.

Also, for each k = 1, 2, · · ·, define

ρk = inf{t ≥ 0 : |x(t)|2 + |y(t)|2 ≤ 1/k}.

Obviously, ρk ↑ ρ as k → ∞ P̃ -a.s. From Itô’s formula and property (iii) it
follows directly that

ẼV (x(ρk ∧ T ), y(ρk ∧ T )) = V (x0, y0) < ∞,

where Ẽ denotes the expection with respect to the probability measure P̃ . Let-
ting vk = min{V (x, y) : |x|2 + |y|2 = 1/k}, we then have that

vkP̃{ρk ≤ T } ≤ V (x0, y0).

But, it follows from property (ii) that vk → ∞ as k → ∞. We hence let k → ∞
to obtain that

P̃{ρ ≤ T } = 0

which is (3.7). The proof is complete.

To close this section, let us mention that the motivation for seeking function
V (x, y) in the form of (3.9) and (3.10) can be found in Markus & Weerasinghe
(1988).

8.4 LINEAR STOCHASTIC OSCILLATORS

Again let B(t) be a 1-dimensional Brownian motion. Consider the scalar
linear stochastic oscillator

ẍ(t) + κx(t) = hḂ(t) on t ≥ 0, (4.1)

where κ and h are positive constants. Of course this is a special case of the
nonlinear stochastic oscillator

ẍ(t) + κ(x(t), ẋ(t), t) = hḂ(t) on t ≥ 0.
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However, as discussed in the previous section, it is enough to study the linear
stochastic oscillator in order to understand many properties of the nonlinear
stochastic oscillator as long as these properties hold almost surely, for instance,
the property that the solution almost surely misses the origin. On the other
hand, certain probabilistic results hold only with some positive probability de-
pending on the parameters κ and h, and are particular to the theory of linear
stochastic oscillators.

By introducing the new variable y(t) = ẋ(t), the corresponding Itô equation
is

d

[

x(t)
y(t)

]

= A

[

x(t)
y(t)

]

dt +

[

0
h

]

dB(t), (4.1)′

where

A =

[

0 1
−κ 0

]

.

Given any initial value (x(0), y(0)) = (x0, y0) ∈ R2, by the theory established in
Chapter 3, we know that equation (4.1)′ has the unique solution

[

x(t)
y(t)

]

= eAt

[

x0

y0

]

+

∫ t

0

eA(t−s)

[

0
h

]

dB(s). (4.2)

Noting that A2 = −κI with I the 2 × 2 identity matrix, we have that

eAt =
∞
∑

i=0

(

A2it2i

(2i)!
+

A2i+1t2i+1

(2i + 1)!

)

=

∞
∑

i=0

(

(−κ)it2iI

(2i)!
+

(−κ)it2i+1A

(2i + 1)!

)

=

∞
∑

i=0

(−1)i

[

(
√

κt)2i

(2i)! , (
√

κt)2i+1

√
κ(2i+1)!

−√
κ(

√
κt)2i+1

(2i+1)! , (
√

κt)2i

(2i)!

]

=

[

cos(
√

κt), 1√
κ

sin(
√

κt)

−√
κ sin(

√
κt), cos(

√
κt)

]

.

Substituting this into (4.2) yields



















x(t) = x0 cos(
√

κt) +
y0√
κ

sin(
√

κt) +
h√
κ

∫ t

0

sin(
√

κ(t − s))dB(s),

y(t) = −x0

√
k sin(

√
κt) + y0 cos(

√
κt) + h

∫ t

0

cos(
√

κ(t − s))dB(s).

(4.3)

For simplicity of treatment we shall consider primarily the case κ = 1, x0 =
1 and y0 = 0, that is, the stochastic oscillator

ẍ(t) + x(t) = hḂ(t) (4.4)
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or

d

[

x(t)
y(t)

]

=

[

y(t)
−x(t)

]

dt +

[

0
h

]

dB(t) (4.4)′

with initial value (1, 0). In this case, (4.3) reduces to



















x(t) = cos t + h

∫ t

0

sin(t − s)dB(s),

y(t) = − sin t + h

∫ t

0

cos(t − s)dB(s).

(4.5)

Of course, when κ 6= 1, x0 6= 1 but still y0 = 0, we can apply appropriate
changes of scale to reduce the study of equation (4.1) to the case of equation
(4.4).

Theorem 4.1 Consider the scalar stochastic process x(t) satisfying the linear
stochastic oscillator:

ẍ(t) + x(t) = hḂ(t) on t ≥ 0

from x(0) = 1, ẋ(0) = 0, with parameter h > 0. Then, almost surely, x(t) has
infinitely many zeros, all simple, on each half line [t0,∞) for every t0 ≥ 0.

Proof. It follows from (4.5) that

x(t) = cos t − h cos t

∫ t

0

sin sdB(s) + h sin t

∫ t

0

cos sdB(s).

Consider x(t) at the discrete instants t = (2k + 1
2 )π, for k = 1, 2, · · ·, when

x
(

(2k +
1

2
)π

)

= h

∫ (2k+ 1
2
)π

0

cos sdB(s).

Define a sequence of random variables {Yk}k≥1 by

Yk = h

∫ (2k+ 1
2
)π

(2(k−1)+ 1
2
)π

cos sdB(s).

Obviously

x
(

(2k +
1

2
)π

)

=

k
∑

i=1

Yi.

Also, {Yk}k≥1 is a sequence of independent random variables, because of the
independence of the increments of the Brownian motion on disjoint intervals.
Moreover, each Yk is normally distributed with mean zero and variance

E(Y 2
k ) = h2

∫ (2k+ 1
2
)π

(2(k−1)+ 1
2
)π

cos2sds = h2π.
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Now the familiar theorems on the limits of sums of independent random variables
(e.g. the law of the iterated logarithm) show that, almost surely, the terms of
the sequence {x((2k + 1

2 )π)} have infinitely many switches of sign as k → ∞.
Since almost all sample path of the solution x(t) is continuous on [0,∞), x(t)
must have, almost surely, infinitely many zeros on each half line [t0,∞) for every
t0 ≥ 0. The simplicity of the zeros of x(t) has already been proved in Theorem
3.4. The proof is complete.

Let us now turn to discuss the first zero of the oscillation.

Theorem 4.2 Consider the scalar stochastic process x(t) satisfying the linear
stochastic oscillator:

ẍ(t) + x(t) = hḂ(t) on t ≥ 0

from x(0) = 1, ẋ(0) = 0, with parameter h > 0. Let τ1 be the time of the first
zero of x(t) on [0,∞), i.e.

τ1 = inf{t ≥ 0 : x(t) = 0}.

Then

Eτ1 ≥ 2 arc coth Erf
( 1√

arc coth

)

, (4.6)

where Erf(·) is the error function given by

Erf(z) =
1√
2π

∫ z

0

e−u2/2du on z ≥ 0.

In order to prove the theorem, we need to present a lemma.

Lemma 4.3 For any b > 0 and T > 0,

P{B(t) > −b on 0 ≤ t ≤ T } = 2 Erf
( b√

T

)

. (4.7)

Proof. The proof uses the well-known reflection principle. Let τ be the first
time of the Brownian motion reaching −b, i.e.

τ = inf{t ≥ 0 : B(t) = −b}.

Obviously

P{τ < T } = P{τ < T, B(T ) < −b} + P{τ < T, B(T ) > −b}.

If τ < T and B(T ) > −b, then sometime before time T the Brownian path
reached level −b and then in the remaining time it travelled from −b to a point
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−b+ c (with c > 0). Because of the symmetry with respect to −b of a Brownian
motion starting at b, the probability of doing this is the same as the probability
of travelling from −b to the point −b − c (please see Figure 8.4.1 below).

-b+c

-b

-b-c

τ T
t

B(t)

Shadow path

Figure 8.4.1: Reflection principle

This reflection principle shows that

P{τ < T, B(T ) > −b} = P{τ < T, B(T ) < −b}.

Hence
P{τ < T } = 2P{τ < T, B(T ) < −b}

But, it is quite easy to see that

P{τ < T, B(T ) < −b} = P{B(T ) < −b}.

We therefore obtain that

P{τ < T } = 2P{B(T ) < −b} = 2P{B(T ) > b}

=
2√
2π T

∫ ∞

b

e−u2/2T du =
2√
2π

∫ ∞

b/
√

T

e−u2/2du.

That is

P

{

inf
0≤t≤T

B(t) ≤ −b

}

= 1 − 2 Erf
( b√

T

)

,

and the required assertion (4.7) follows.

We can now prove Theorem 4.2.

Proof of Theorem 4.2. Noting from the integration-by-parts formula that

∫ t

0

sin(t − s)dB(s) =

∫ t

0

B(s) cos(t − s)ds,
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we obtain from (4.5) that

x(t) = cos t + h

∫ t

0

B(s) cos(t − s)ds.

Set
Ω̄ = {ω : B(t) > −1 on 0 ≤ t ≤ arc coth}.

By Lemma 4.3,

P (Ω̄) = 2 Erf
( 1√

arc coth

)

.

Since cos(t − s) > 0 on 0 ≤ s ≤ t < π/2, we find that for all ω ∈ Ω̄,

x(t) > cos t − h

∫ t

0

cos(t − s)ds = cos t − h sin t > 0

if 0 ≤ t ≤ arc coth. Hence

τ1(ω) ≥ arc coth for ω ∈ Ω̄.

Finally

Eτ1 ≥ E(τ1IΩ̄) ≥ arc coth P (Ω̄) = 2 arc coth Erf
( 1√

arc coth

)

as desired. The proof is complete.

We now demonstrate that the first zero time τ1 has finite moments, and we
estimate the first two moments Eτ1 and Eτ2

1 from above.

Theorem 4.4 Consider the scalar stochastic process x(t) satisfying the linear
stochastic oscillator:

ẍ(t) + x(t) = hḂ(t) on t ≥ 0

from x(0) = 1, ẋ(0) = 0, with parameter h > 0. Let τ1 be the time of the first
zero of x(t) on [0,∞). Then

P{τ1 > T } <
4c(h)

2T/π
for each T ≥ π, (4.8)

where the constant c(h) = 1
2 − Erf(h−1

√

2/π), so limh→0 = 0. In consequence,

P{τ1 < ∞} = 1,

and every moment of τ1 is finite, with the first two moments having the upper
bounds:

Eτ1 < π(1 + 2c(h)) ≤ 2π (4.9)
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and
Eτ2

1 < π2(1 + 22c(h)) ≤ 12π2. (4.10)

Proof. Evaluate x(t) at the discrete instants t = kπ for k = 1, 2, · · · to obtain

x(kπ) = cos(kπ)[1 − hB̄(kπ)],

where

B̄(kπ) =

∫ kπ

0

sin sdB(s).

Hence
x(kπ) > 0

if and only if

B̄(kπ)

{

> 1/h for k = 1, 3, · · ·,
< 1/h for k = 2, 4, · · ·.

Set

Yk =

∫ kπ

(k−1)π

sin sdB(s).

Then Yk’s are independent normal random variables with mean zero and variance

E(Y 2
k ) =

∫ kπ

(k−1)π

sin2 sds =
π

2
.

Moreover

B̄(kπ) =

k
∑

i=1

Yk.

Combining the above arguments, we see that

{τ1 > π} = {x(t) > 0 for all 0 ≤ t ≤ π}
⊂ {x(π) > 0} = {B̄(π) > 1/h} = {Y1 > 1/h}.

Thus

P{τ1 > π} ≤ P{Y1 > 1/h} =
1

2
− Erf(h−1

√

2/π) ≡ c(h).

Furthermore, we have that

{τ1 > 2π} = {x(t) > 0 for all 0 ≤ t ≤ 2π}
⊂ {x(π) > 0, x(2π) > 0} = {B̄(π) > 1/h, B̄(2π) < 1/h}

= {Y1 > 1/h, Y1 + Y2 < 1/h} ⊂ {Y1 > 1/h, Y2 < 0}.

Hence

P{τ1 > 2π} ≤ P{Y1 > 1/h, Y2 < 0} = P{Y1 > 1/h}P{Y2 < 0} =
c(h)

2
.
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Continuing this argument, we find that

P{τ1 > kπ} ≤ c(h)

2k−1
for k = 1, 2, · · · .

In order to estimate the probability that τ1 exceeds an arbitrary positive number
T ≥ π, we let [T/π] be the greatest integer not exceeding T/π, so [T/π]π ≤ T .
Then

P{τ1 > T } ≤ P{τ1 > [T/π]π} ≤ c(h)

2[T/π]−1
<

4c(h)

2T/π
,

which is the required assertion (4.8). From this upper estimate on the probability
distribution for τ1 we easily conclude that

lim
T→∞

P{τ1 > T } = 0 or P{τ1 < ∞} = 1.

Now re-write (4.8) as

P{τ1 > T } < 4c(h) exp
(

− log 2

π
T

)

,

we see that P{τ1 > T } satisfies a bound of exponential decay, and we are assured
that each moment of τ1 is finite. We now establish the upper bounds for its first
two moments. Note that for any non-negative random variable ξ, we have

Eξ ≤
∞
∑

k=1

kP{k − 1 < ξ ≤ k} =

∞
∑

k=1

k
∑

i=1

P{k − 1 < ξ ≤ k}

=

∞
∑

i=1

∞
∑

k=i

P{k − 1 < ξ ≤ k} =

∞
∑

i=1

P{i − 1 < ξ}

≤ 1 +

∞
∑

k=1

P{ξ > k}. (4.11)

Let ξ = τ1/π to obtain that

1

π
Eτ1 ≤ 1 +

∞
∑

k=1

P{τ1 > kπ} ≤ 1 + c(h)

∞
∑

k=1

1

2k−1
= 1 + 2c(h).

Thus
Eτ1 ≤ π[1 + 2c(h)] ≤ 2π.

For the second moment we estimate

Eτ2
1 ≤

∞
∑

k=0

[(k + 1)π]2P{kπ < τ1 ≤ (k + 1)π}

≤ π2

[

1 + c(h)

∞
∑

k=1

(k + 1)2

2k−1

]

= π2 + 4π2c(h)

[ ∞
∑

k=0

(k + 1)2

2k+1
− 1

2

]

.
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The sum of the infinite series is easily calculated:

∞
∑

k=0

(k + 1)2

2k+1
= (zq′(z))′

∣

∣

z=1
= 6,

where

q(z) =

∞
∑

k=0

zk+1

2k+1
=

z

2 − z
.

Thus we have the required estimate

Eτ2
1 ≤ π2[1 + 22c(h)] ≤ 12π2.

The proof is complete.

Let us now proceed to study the times of subsequent zeros of x(t). For each
i = 2, 3, · · ·, define by τi the time of the ith zero of x(t), namely

τi = inf{t > τi−1 : x(t) = 0}.

Since the zeros of x(t) are all simple almost surely, these stopping times are all
well defined. Clearly, they are increasing, namely τ1 < τ2 < τ3 < · · ·.

Theorem 4.5 Consider the scalar stochastic process x(t) satisfying the linear
stochastic oscillator:

ẍ(t) + x(t) = hḂ(t) on t ≥ 0

from x(0) = 1, ẋ(0) = 0, with parameter h > 0. Let τi be the time of the ith
zero of x(t). Then

Eτi ≤ 2iπ for each i = 1, 2, · · · . (4.12)

In order to prove this theorem, let us present a lemma.

Lemma 4.6 Consider the scalar stochastic process z(t) satisfying the linear
stochastic oscillator:

z̈(t) + z(t) = hḂ(t) on t ≥ 0

from z(0) = 0, ż(0) 6= 0, with parameter h > 0. Let θ1 be the time of the first
zero of z(t) on t > 0, that is

θ1 = inf{t > 0 : z(t) = 0}.

Then
Eθ1 ≤ 2π. (4.13)
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Proof. It follows from (4.3) that

z(t) = ż(0) sin t + h

∫ t

0

sin(t − s)dB(s)

= ż(0) sin t + h sin t

∫ t

0

cos sdB(s) − h cos t

∫ t

0

sin sdB(s).

Examine z(t) at the discrete times t = kπ for k = 1, 2, · · ·, when

z(kπ) = h(−1)k+1B̄(kπ),

where

B̄(kπ) =

∫ kπ

0

sin sdB(s).

Hence
z(kπ) > 0

if and only if

B̄(kπ)

{

> 0 for k = 1, 3, · · ·,
< 0 for k = 2, 4, · · ·.

These results do not depend on the value of ż(0) 6= 0. From this calculation we
note that

z(π) > 0 if and only if B̄(π) > 0

so

P{z(t) > 0 on 0 < t ≤ π} ≤ P{z(π) > 0} = P{B̄(π) > 0} =
1

2
.

We also compute that

P{z(t) > 0 on 0 < t ≤ 2π}
≤ P{z(π) > 0, z(2π) > 0}
= P{B̄(π) > 0, B̄(2π) < 0}
= P{B̄(π) > 0, B̄(π) + [B̄(2π) − B̄(π)] < 0}
≤ P{B̄(π) > 0, B̄(2π) − B̄(π) < 0}
= P{B̄(π) > 0}P{B̄(2π) − B̄(π) < 0}

=
1

22
.

Repeating this argument, we obtain that

P{z(t) > 0 on 0 < t ≤ kπ} ≤ 1

2k
.

Therefore

P{θ1 > kπ} ≤ 1

2k
.
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We now let ξ = θ1/π in (4.11) to obtain that

1

π
Eθ1 ≤ 1 +

∞
∑

k=1

P{θ1 > kπ} ≤ 1 +

∞
∑

k=1

1

2k
= 2.

That is Eθ1 ≤ 2π as desired.

We can now easily prove Theorem 4.5.

Proof. We already know from Theorem 4.4 that Eτ1 ≤ 2π. In order to estimate
Eτ2, we shift the time scale from t ≥ 0 to s = t− τ1. Write z(s) = x(s+ τ1) and
note that

z̈(s) + z(s) = hẇ(s)

with z(0) = 0 and ż(0) 6= 0, where w(s) = B(s + τ1) − B(τ1) which is a new
Brownian motion on s ≥ 0. Define

θ1 = inf{s > 0 : z(s) = 0}.

Then τ2 = τ1 + θ1. But by Lemma 4.5, Eθ1 ≤ 2π. We therefore obtain that
Eτ2 ≤ 4π. An elementary repetition of this argument yields the desired result

Eτi ≤ 2iπ for each i = 1, 2, · · · .

8.5 ENERGY BOUNDS

In this section we let B(t) be an m-dimensional Brownian motion. Mo-
tivated by the classical theory of nonlinear oscillations, we consider the d-
dimensional second order stochastic differential equation

ẍ(t) + b(x(t), ẋ(t)) + ∇G(x(t)) = σ(x(t), ẋ(t), t)Ḃ(t) + h(t) (5.1)

on t ≥ 0, where x = (x1, · · · , xd)
T ∈ Rd, −∇G(x) is the restoring force, −b(x, ẋ)

is a dissipative force, h(t) is an external driving force, and σ(x, ẋ, t) represents
the intensity of a stochastic disturbance. In terms of mathematics, we have
that b : Rd × Rd → Rd, G ∈ C1(Rd; R+) and ∇G(x) = (Gx1

, · · · , Gxd
)T , σ :

Rd × Rd × R+ → Rd×m and h : R+ → Rd. The corresponding 2d-dimensional
Itô equation is

{

dx(t) = y(t)dt,

dy(t) = [−b(x(t), y(t)) −∇G(x(t)) + h(t)]dt + σ(x(t), y(t), t)dB(t).
(5.1)′

Assume that all the functions b, G, σ and h are sufficiently smooth so that equa-
tion (5.1)′ has a unique global solution (x(t), y(t)) on t ≥ 0 for any given initial
value (x0, y0) ∈ Rd × Rd.



Sec.8.5] Energy Bounds 289

Define the energy of the system by

U(t) =
1

2
|y(t)|2 + G(x(t)), t ≥ 0. (5.2)

Bearing in mind that G is a nonnegative function, we see that the energy is
always nonnegative. Moreover, although the function 1

2 |y|2 + G(x) is only once
differentiable in x (of course twice in y), we can still apply the Itô formula to U(t)
due to the relation dx(t) = y(t)dt which does not involve the stochastic integral.
The aim of this section is to establish the asymptotic bounds for the energy. To
make the theory more understandable, we shall first discuss the unforced system
and then return to the above general case.

(i) Unforced Dynamics

If there is no external driving force, i.e. h(t) ≡ 0, equation (5.1)′ becomes

{

dx(t) = y(t)dt,

dy(t) = [−b(x(t), y(t)) −∇G(x(t))]dt + σ(x(t), y(t), t)dB(t).
(5.3)

We shall prove several theorems on the energy bounds to allow for polynomial-
exponential growth of the diffusion term. We begin with the following theorem.

Theorem 5.1 Let p(t) be a real polynomial of degree q on t ≥ 0 with the leading
coefficient K > 0 and the other coefficients nonnegative. Assume that

yT b(x, y, t) ≥ 0 (5.4)

and
|σ(x, y, t)|2 ≤ p(t) (5.5)

for all x, y ∈ Rd and t ≥ 0. Then the energy of system (5.3) has the property
that

lim sup
t→∞

U(t)

tq+1 log log t
≤ Ke

q + 1
a.s. (5.6)

To prove this theorem, let us present a useful inequality.

Lemma 5.2 Let T > 0 and z0 ≥ 0. Let z, u and v be continuous nonnegative
functions defined on [0, T ]. If

z(t) ≤ z0 +

∫ t

0

[u(s) + v(s)z(s)]ds (5.6)

for all 0 ≤ t ≤ T , then

z(t) ≤ exp

(
∫ t

0

v(s)ds

)[

z0 +

∫ t

0

exp

(

−
∫ s

0

v(r)dr

)

u(s)ds

]

(5.7)
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for all 0 ≤ t ≤ T as well.

Proof. Set

z̄(t) = z0 +

∫ t

0

[u(s) + v(s)z(s)]ds.

It then follows from (5.6) that

z(t) ≤ z̄(t) on 0 ≤ t ≤ T.

Moreover, we compute that

d

dt

[

exp

(

−
∫ t

0

v(s)ds

)

z̄(t)

]

= exp

(

−
∫ t

0

v(s)ds

)[

dz̄(t)

dt
− v(t)z̄(t)

]

= exp

(

−
∫ t

0

v(s)ds

)

[

u(t) + v(t)z(t) − v(t)z̄(t)
]

≤ exp

(

−
∫ t

0

v(s)ds

)

u(t).

Integrating both sides from 0 to t yields that

exp

(

−
∫ t

0

v(s)ds

)

z̄(t) − z0 ≤
∫ t

0

exp

(

−
∫ s

0

v(r)dr

)

u(s)ds.

This implies that

z̄(t) ≤ exp

(
∫ t

0

v(s)ds

)[

z0 +

∫ t

0

exp

(

−
∫ s

0

v(r)dr

)

u(s)ds

]

and the required inequality (5.7) follows.

Proof of Theorem 5.1. Applying Itô’s formula along with hypotheses (5.4) and
(5.5), we derive that

U(t) = U(0) +

∫ t

0

(

−yT (s)b(x(s), y(s)) +
1

2
|σ(x(s), y(s), s)|2

)

ds

+

∫ t

0

yT (s)σ(x(s), y(s), s)dB(s)

≤ U(0) +
1

2

∫ t

0

p(s)ds +

∫ t

0

yT (s)σ(x(s), y(s), s)dB(s). (5.8)

For any positive constants γ, δ and τ , by the exponential martingale inequality
(i.e. Theorem 1.7.4), we have that

P

{

sup
0≤t≤τ

[
∫ t

0

yT σdB(s) − γ

2

∫ t

0

|yT σ|2ds

]

> δ

}

≤ e−γδ. (5.9)
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Fix θ > 1 and β > 0 arbitrarily. For each k = 1, 2, · · ·, we let

γ = βθ−k(q+1), δ = β−1θk(q+1)+1 log k, τ = θk

in (5.9) to obtain that

P

{

sup
0≤t≤θk

[
∫ t

0

yT σdB(s) − βθ−k(q+1)

2

∫ t

0

|yT σ|2ds

]

> β−1θk(q+1)+1 log k

}

≤ 1

kθ
.

By the Borel–Cantelli lemma, we see that for almost all ω ∈ Ω,

sup
0≤t≤θk

[
∫ t

0

yT σdB(s) − βθ−k(q+1)

2

∫ t

0

|yT σ|2ds

]

≤ β−1θk(q+1)+1 log k

holds for all but finitely many k. Hence, for almost all ω ∈ Ω, there exists a
random integer k0 = k0(ω) such that

∫ t

0

yT σdB(s) ≤ β−1θk(q+1)+1 log k +
βθ−k(q+1)

2

∫ t

0

|yT σ|2ds

holds for all 0 ≤ t ≤ θk whenever k ≥ k0. Noting that

1

2

∫ t

0

|yT σ|2ds ≤
∫ t

0

p(s)U(s)ds,

we obtain that
∫ t

0

yT σdB(s) ≤ β−1θk(q+1)+1 log k + βθ−k(q+1)

∫ t

0

p(s)U(s)ds

for all 0 ≤ t ≤ θk, k ≥ k0 almost surely. Substituting this into (5.8) yields that

U(t) ≤ U(0) +
1

2

∫ t

0

p(s)ds + β−1θk(q+1)+1 log k

+ βθ−k(q+1)

∫ t

0

p(s)U(s)ds

for all 0 ≤ t ≤ θk, k ≥ k0 almost surely. Applying Lemma 5.2, we then derive
that

U(t) ≤ exp

(

βθ−k(q+1)

∫ t

0

p(s)ds

)

×
[

U(0) + β−1θk(q+1)+1 log k +
1

2

∫ t

0

exp

(

−βθ−k(q+1)

∫ s

0

p(r)dr

)

p(s)ds

]

≤ exp
[

βθ−k(q+1)p̄(θk)
]

(

U(0) + β−1θk(q+1)+1 log k +
1

2β
θk(q+1)

)

(5.10)
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for all 0 ≤ t ≤ θk, k ≥ k0 almost surely, where

p̄(t) =

∫ t

0

p(s)ds

which is a polynomial of degree q + 1 with the leading coefficient K/(q + 1) and
so

θ−k(q+1)p̄(θk) → K

q + 1
as k → ∞.

Note that for θk−1 ≤ t ≤ θk,

log(k − 1) + log log θ ≤ log log t ≤ log k + log log θ.

It follows from (5.10) that for almost all ω ∈ Ω, if θk−1 ≤ t ≤ θk and k ≥ k0,

U(t)

tq+1 log log t
≤ 1

θ(k−1)(q+1)[log(k − 1) + log log θ]

× exp
[

βθ−k(q+1)p̄(θk)
]

(

U(0) + β−1θk(q+1)+1 log k +
1

2β
θk(q+1)

)

.

Therefore

lim sup
t→∞

U(t)

tq+1 log log t

≤ lim sup
k→∞

{

1

θ(k−1)(q+1)[log(k − 1) + log log θ]

× exp
[

βθ−k(q+1)p̄(θk)
]

(

U(0) + β−1θk(q+1)+1 log k +
1

2β
θk(q+1)

)}

= β−1θq+2 exp

(

βK

q + 1

)

a.s.

Since θ > 1 is arbitrary, we must have that

lim sup
t→∞

U(t)

tq+1 log log t
≤ β−1 exp

(

βK

q + 1

)

a.s.

Further note the trivial arithmetic statement

min
β>0

{

β−1 exp

(

βK

q + 1

)}

= β−1 exp

(

βK

q + 1

)
∣

∣

∣

∣

β=(q+1)/K

=
Ke

q + 1
.

We can therefore choose β = (q + 1)/K to obtain

lim sup
t→∞

U(t)

tq+1 log log t
≤ Ke

q + 1
a.s.
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as required. The proof is complete.

Corollary 5.3 Let Ū(t) = sup0≤s≤t U(s) on 0 ≤ t < ∞. Then, under the
hypotheses of Theorem 5.1,

lim sup
t→∞

Ū(t)

tq log log t
= lim sup

t→∞

U(t)

tq log log t
a.s.

This corollary follows from Theorem 5.1 and the following lemma.

Lemma 5.4 Let g : R+ → R+ and f : R+ → (0,∞) be two functions with f
nondecreasing and f(t) → ∞ as t → ∞. Let ḡ(t) = sup0≤s≤t g(s) on 0 ≤ t < ∞.
If

lim sup
t→∞

g(t)

f(t)
< ∞,

then

lim sup
t→∞

ḡ(t)

f(t)
= lim sup

t→∞

g(t)

f(t)
.

Proof. Let

ξ = lim sup
t→∞

g(t)

f(t)
< ∞.

Assign ε > 0 arbitrarily and then there exists a T (ε) > 0 such that

g(t)

f(t)
≤ ξ + ε for all t ≥ T (ε).

That is,

g(t) ≤ (ξ + ε)f(t) for all t ≥ T (ε).

Thus

ḡ(t) ≤ ḡ(T (ε)) + sup
T (ε)≤s≤t

g(s) ≤ ḡ(T (ε)) + f(t)(ξ + ε)

for all t ≥ T (ε). In consequence,

lim sup
t→∞

ḡ(t)

f(t)
≤ ξ + ε.

Since ε > 0 is arbitrary, we get

lim sup
t→∞

ḡ(t)

f(t)
≤ lim sup

t→∞

g(t)

f(t)
.

But ḡ(t) ≥ g(t) and so the equality must hold, and the proof is complete.
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Theorem 5.5 Let p(t) be a real polynomial of degree q on t ≥ 0 with the leading
coefficient K > 0 and the other coefficients nonnegative. Let ρ > 0. Assume
that

yT b(x, y, t) ≥ 0 (5.11)

and
|σ(x, y, t)|2 ≤ p(t)eρt (5.12)

for all x, y ∈ Rd and t ≥ 0. Then the energy of system (5.3) has the property
that

lim sup
t→∞

U(t)

eρttq log t
≤ Ke

ρ
a.s. (5.13)

Moreover (in the notation of Corollary 5.3),

lim sup
t→∞

Ū(t)

eρttq log t
= lim sup

t→∞

U(t)

eρttq log t
a.s. (5.14)

Proof. We use the same notations as in the proof of Theorem 5.1. By Itô’s
formula and the hypotheses we can easily show that

U(t) ≤ U(0) +
1

2

∫ t

0

p(s)eρsds +

∫ t

0

yT (s)σ(x(s), y(s), s)dB(s). (5.15)

Fix θ > 1 and β, ξ > 0 arbitrarily. For each k = 1, 2, · · ·, we let

γ = β(kξ)−qe−ρkξ, δ =
θ

β
(kξ)qeρkξ log k, τ = kξ.

in (5.9) to obtain that

P

{

sup
0≤t≤kξ

[
∫ t

0

yT σdB(s) − 1

2
β(kξ)−qe−ρkξ

∫ t

0

|yT σ|2ds

]

>
θ

β
(kξ)qeρkξ log k

}

≤ 1

kθ
.

By the Borel–Cantelli lemma, we then see that for almost all ω ∈ Ω, there exists
a random integer k0 = k0(ω) such that

∫ t

0

yT σdB(s) ≤ θ

β
(kξ)qeρkξ log k +

1

2
β(kξ)−qe−ρkξ

∫ t

0

|yT σ|2ds

≤ θ

β
(kξ)qeρkξ log k + β(kξ)−qe−ρkξ

∫ t

0

p(s)eρsU(s)ds

for all 0 ≤ t ≤ kξ and k ≥ k0. Substituting this into (5.15) yields that

U(t) ≤ U(0) +
θ

β
(kξ)qeρkξ log k

+
1

2

∫ t

0

p(s)eρsds + β(kξ)−qe−ρkξ

∫ t

0

p(s)eρsU(s)ds
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for all 0 ≤ t ≤ kξ, k ≥ k0 almost surely. By Lemma 5.2, we then derive that

U(t) ≤ exp

(

β(kξ)−qe−ρkξ

∫ t

0

p(s)eρsds

)

×
{

U(0) +
θ

β
(kξ)qeρkξ log k

+
1

2

∫ t

0

p(s)eρs exp

(

−β(kξ)−qe−ρkξ

∫ s

0

p(r)eρrdr

)

ds

}

≤ exp

[

β

ρ
(kξ)−qp(kξ)

]

×
{

U(0) +
θ

β
(kξ)qeρkξ log k +

1

2β
(kξ)qeρkξ

}

for all 0 ≤ t ≤ kξ, k ≥ k0 almost surely. Therefore, for almost all ω ∈ Ω, if
(k − 1)ξ ≤ t ≤ kξ and k ≥ k0,

U(t)

eρttq log t
≤

(

eρ(k−1)ξ[(k − 1)ξ]q[log(k − 1) + log ξ]
)−1

× exp

[

β

ρ
(kξ)−qp(kξ)

]

×
{

U(0) +
θ

β
(kξ)qeρkξ log k +

1

2β
(kξ)qeρkξ

}

.

Noting that
(kξ)−qp(kξ) → K as k → ∞,

we see

lim sup
t→∞

U(t)

eρttq log t
≤ θ

β
eρξ+βK/ρ a.s.

Letting θ → 1 and ξ → 0 yields that

lim sup
t→∞

U(t)

eρttq log t
≤ 1

β
eβK/ρ a.s.

Since this holds for arbitrary β > 0, we can specially choose β = ρ/K to obtain
that

lim sup
t→∞

U(t)

eρttq log t
≤ Ke

ρ
a.s.

as desired. The proof is complete.

(ii) Forced Dynamics

We shall now turn to consider the energy bounds for the more general
equation (5.1) under the external force, namely

{

dx(t) = y(t)dt,

dy(t) = [−b(x(t), y(t)) −∇G(x(t)) + h(t)]dt + σ(x(t), y(t), t)dB(t).
(5.16)



296 Stochastic Oscillators [Ch.8

Theorem 5.6 Let pi(t), 1 ≤ i ≤ 4, be real polynomials of degrees qi on t ≥
0 with the leading coefficients Ki > 0 and the other coefficients nonnegative.
Assume that

yT b(x, y, t) ≥ −p1(t) − p2(t)
(1

2
|y|2 + G(x)

)

,

|σ(x, y, t)|2 ≤ p3(t),

|h(t)| ≤ p4(t)

for all x, y ∈ Rd and t ≥ 0. Then the energy of system (5.16) has the property
that

lim sup
t→∞

U(t)

exp[t(p2(t) + p4(t))] tq+1 log log t

≤
{

K3e/(q3 + 1) if q3 ≥ q1 ∨ q2,
0 otherwise,

(5.17)

almost surely, where q = q1 ∨ q2 ∨ q3.

Proof. By Itô’s formula,

U(t) = U(0) +

∫ t

0

(

yT (s)[−b(x(s), y(s)) + h(s)] +
1

2
|σ(x(s), y(s), s)|2

)

ds

+

∫ t

0

yT (s)σ(x(s), y(s), s)dB(s).

Noting that

yT (s)h(s) ≤ |h(s)||y(s)| ≤ 1

2
|h(s)|(1 + |y(s)|2) ≤ |h(s)|(1 + U(s))

and using the hypotheses we then see that

U(t) ≤ U(0) +

∫ t

0

[

p̄(s) + [p2(s) + p4(s)]U(s)
]

ds

+

∫ t

0

yT (s)σ(x(s), y(s), s)dB(s), (5.18)

where p̄(s) = p1(s) + 1
2p3(s) + p4(s) which is a polynomial of degree q := q1 ∨

q2 ∨ q3. Assign θ > 1 and β > 0 arbitrarily. In the same way as in the proof of
Theorem 5.1, we can show that for almost all ω ∈ Ω, there is a random integer
k0 = k0(ω) such that

∫ t

0

yT σdB(s) ≤ β−1θk(q+1)+1 log k + βθ−k(q+1)

∫ t

0

p3(s)U(s)ds
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for all 0 ≤ t ≤ θk, k ≥ k0. Substituting this into (5.18) yields that

U(t) ≤ U(0) + β−1θk(q+1)+1 log k + p̄(θk)θk

+

∫ t

0

[

βθ−k(q+1)p3(s) + p2(s) + p4(s)
]

U(s)ds

for all 0 ≤ t ≤ θk, k ≥ k0 almost surely. By the Gronwall inequality, we then
have that

U(t) ≤
[

U(0) + β−1θk(q+1)+1 log k + p̄(θk)θk
]

× exp

(
∫ t

0

[

βθ−k(q+1)p3(s) + p2(s) + p4(s)
]

ds

)

≤
[

U(0) + β−1θk(q+1)+1 log k + p̄(θk)θk
]

× exp

(

βθ−k(q+1)

∫ θk

0

p3(s)ds + t[p2(t) + p4(t)]

)

for all 0 ≤ t ≤ θk, k ≥ k0 almost surely. Therefore, for almost all ω ∈ Ω, if
θk−1 ≤ t ≤ θk and k ≥ k0,

U(t)

exp[t(p2(t) + p4(t))] tq+1 log log t

≤ U(0) + β−1θk(q+1)+1 log k + p̄(θk)θk

θ(k−1)(q+1)[log(k − 1) + log log θ]
exp

(

βθ−k(q+1)

∫ θk

0

p3(s)ds

)

.

If q3 ≥ q1 ∨ q2, then q = q3 and

exp

(

βθ−k(q+1)

∫ θk

0

p3(s)ds

)

→ eβK3/(q3+1) as k → ∞.

We therefore derive that

lim sup
t→∞

U(t)

exp[t(p2(t) + p4(t))] tq+1 log log t
≤ β−1θq+2eβK3/(q3+1) a.s.

Letting θ → 1 and then choosing β = (q3 + 1)/K3 we obtain

lim sup
t→∞

U(t)

exp[t(p2(t) + p4(t))] tq+1 log log t
≤ K3e

q3 + 1
a.s.

On the other hand, if q3 < q1 ∨ q2, then q > q3 and

exp

(

βθ−k(q+1)

∫ θk

0

p3(s)ds

)

→ 1 as k → ∞.



298 Stochastic Oscillators [Ch.8

Therefore

lim sup
t→∞

U(t)

exp[t(p2(t) + p4(t))] tq+1 log log t
≤ β−1θq+2 a.s.

Letting β → ∞ yields

lim sup
t→∞

U(t)

exp[t(p2(t) + p4(t))] tq+1 log log t
≤ 0 a.s.

The proof is complete.

If all the pi(t)’s reduce to constants, namely pi(t) ≡ Ki and qi = 0, we
obtain the following useful result.

Corollary 5.7 Let Ki, 1 ≤ i ≤ 4, be positive constants. Assume that

yT b(x, y, t) ≥ −K1 − K2

(1

2
|y|2 + G(x)

)

,

|σ(x, y, t)|2 ≤ K3,

|h(t)| ≤ K4

for all x, y ∈ Rd and t ≥ 0. Then the energy of system (5.16) has the property
that

lim sup
t→∞

U(t)

exp[t(K2 + K4)] t log log t
≤ K3e a.s.

Theorem 5.8 Let pi(t), 1 ≤ i ≤ 4, be real polynomials of degrees qi on t ≥ 0
with the leading coefficients Ki > 0 and the other coefficients nonnegative. Let
ρ > 0. Assume that

yT b(x, y, t) ≥ −p1(t) − p2(t)
(1

2
|y|2 + G(x)

)

,

|σ(x, y, t)|2 ≤ p3(t)e
ρt,

|h(t)| ≤ p4(t)

for all x, y ∈ Rd and t ≥ 0. Then the energy of system (5.16) has the property
that

lim sup
t→∞

U(t)

exp[t(ρ + p2(t) + p4(t))] tq3 log t
≤ K3e

ρ
a.s. (5.19)

Proof. By Itô’s formula and the hypotheses we can show that

U(t) ≤ U(0) +

∫ t

0

[

p1(s) + p4(s) +
1

2
p3(s)e

ρs
]

ds

+

∫ t

0

[p2(s) + p4(s)]U(s)ds +

∫ t

0

yT (s)σ(x(s), y(s), s)dB(s). (5.20)
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Assign θ > 1 and β, ξ > 0 arbitrarily. In the same way as in the proof of
Theorem 5.5 we can show that for almost all ω ∈ Ω, there exists a random
integer k0 = k0(ω) such that

∫ t

0

yT σdB(s) ≤ θ

β
(kξ)q3eρkξ log k + β(kξ)−q3e−ρkξ

∫ t

0

p3(s)e
ρsU(s)ds

for all 0 ≤ t ≤ kξ and k ≥ k0. Substituting this into (5.20) gives that

U(t) ≤ U(0) +

∫ t

0

[

p1(s) + p4(s) +
1

2
p3(s)e

ρs
]

ds

+

∫ t

0

[p2(s) + p4(s)]U(s)ds +
θ

β
(kξ)q3eρkξ log k

+ β(kξ)−q3e−ρkξ

∫ t

0

p3(s)e
ρsU(s)ds

≤ U(0) + kξ[p1(kξ) + p4(kξ)] +
1

2ρ
p3(kξ)eρkξ +

θ

β
(kξ)q3eρkξ log k

+

∫ t

0

[

p2(s) + p4(s) + β(kξ)−q3e−ρkξp3(s)e
ρs

]

U(s)ds

for all 0 ≤ t ≤ kξ and k ≥ k0 almost surely, where we have also used the
following estimate

∫ kξ

0

p3(s)e
ρsds ≤ p3(kξ)

∫ kξ

0

eρsds ≤ 1

ρ
p3(kξ)eρkξ .

An application of the Gronwall inequality implies that

U(t) ≤
(

U(0) + kξ[p1(kξ) + p4(kξ)] +
1

2ρ
p3(kξ)eρkξ +

θ

β
(kξ)q3eρkξ log k

)

× exp

(
∫ t

0

[

p2(s) + p4(s) + β(kξ)−q3e−ρkξp3(s)e
ρs

]

ds

)

≤
(

U(0) + kξ[p1(kξ) + p4(kξ)] +
1

2ρ
p3(kξ)eρkξ +

θ

β
(kξ)q3eρkξ log k

)

× exp

(

t[p2(t) + p4(t)] +
β

ρ
(kξ)−q3p3(kξ)

)

for all 0 ≤ t ≤ kξ and k ≥ k0 almost surely. Therefore, for almost all ω ∈ Ω, if
(k − 1)ξ ≤ t ≤ kξ, then

U(t)

exp[t(ρ + p2(t) + p4(t))] tq3 log t

≤
(

eρ(k−1)ξ[(k − 1)ξ]q3 [log(k − 1) + log ξ]
)−1

exp

(

β

ρ
(kξ)−q3p3(kξ)

)

×
(

U(0) + kξ[p1(kξ) + p4(kξ)] +
1

2ρ
p3(kξ)eρkξ +

θ

β
(kξ)q3eρkξ log k

)

.
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Bearing in mind that

(kξ)−q3p3(kξ) → K3 as k → ∞,

we see immediately that

lim sup
t→∞

U(t)

exp[t(ρ + p2(t) + p4(t))] tq3 log t
≤ θ

β
exp

(

ρξ +
βK3

ρ

)

a.s.

Letting θ → 1 and ξ → 0 and then choosing β = ρ/K3, we obtain

lim sup
t→∞

U(t)

exp[t(ρ + p2(t) + p4(t))] tq3 log t
≤ K3e

ρ
a.s.

which is the required assertion. The proof is complete.

To close this chapter, let us state one immediate corollary.

Corollary 5.9 Let ρ and Ki(1 ≤ i ≤ 4) be positive constants. Assume that

yT b(x, y, t) ≥ −K1 − K2

(1

2
|y|2 + G(x)

)

,

|σ(x, y, t)|2 ≤ K3e
ρt,

|h(t)| ≤ K4

for all x, y ∈ Rd and t ≥ 0. Then the energy of system (5.16) has the property
that

lim sup
t→∞

U(t)

exp[t(ρ + K2 + K4)] log t
≤ K3e

ρ
a.s.
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Applications

to Economics and Finance

9.1 INTRODUCTION

Pricing models for financial derivatives require, by their very nature, the utiliza-
tion of continuous-time stochastic processes, especially Itô’s stochastic calculus.
For example, the Black–Scholes model (Black & Scholes (1973)) used the method
of arbitrage-free pricing. But the paper was also influential because of the tech-
nical steps introduced in obtaining a closed-form formula for options prices. For
an approach that used abstract notions such as the Itô calculus, the formula was
accurate enough to win the attention of market participants. In brief, stochastic
modelling has become more and more popular in financial economics. In this
chapter, we shall apply the theory of stochastic differential equations to the re-
lated problems in finance. As usual, we shall work on the given probability space
(Ω,F , {Ft}, P ) throughout this chapter.

9.2 STOCHASTIC MODELLING IN ASSET PRICES

One of the important problems in finance is the specification of the stochas-
tic process governing the behaviour of an asset. We here use the term asset to
describe any financial object whose value is known at present but is liable to
change in the future. Typical examples are
• shares in a company,
• commodities such as gold, oil or electricity,
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• currencies, for example, the value of $100 US in UK pounds.
In this section we shall describe a number of stochastic differential equations
which have often been used in modelling asset prices.

(i) Geometric Brownian Motion

In the early studies, people assumed that the price of an asset followed a
Gaussian process described by the Itô differential

dS(t) = λdt+ σdB(t) (2.1)

on t ≥ 0. Here, and throughout this section, S(t) is the price of the asset at
time t, both λ and σ are positive constants, B(t) is a one-dimensional Brownian
motion and, moreover, the initial price is a positive constant S0, i.e. S(0) =
S0 > 0. Clearly

S(t) = S0 + λt+ σB(t)

which is normally distributed with mean S0 + λt and variance σ2t. So the price
may become negative but this violates the condition of limited liability. To
overcome this weakness, several people, e.g. Samuelson (1965), Black & Scholes
(1973), suggested the idea of modelling by geometric Brownian motions.

To explain this classical model, let us first remark that the absolute change
in the asset price is not by itself a useful quantity: a change of 1p is much more
significant when the asset price is 20p than when it is 200p. Instead, with each
change in asset price, we associate a return, defined to be the change in the price
divided by the original value. This relative measure of the change is clearly a
better indicator of its size than any absolute measure.

Now suppose that at time t the asset price is S(t). Let us consider a small
subsequent time interval dt, during which S(t) changes to S(t)+dS(t). (We use
the notation d· for the small change in any quantity over this time interval when
we intend to consider it as an infinitesimal change.) By definition, the return of
the asset price at time t is dS(t)/S(t). How might we model this return?

If the asset is a bank saving account then S(t) is the balance of the saving
at time t. Suppose that the bank deposit interest rate is r. Thus the return
dS(t)/S(t) of the saving at time t is rdt, that is

dS(t)
S(t)

= rdt

or
dS(t)
dt

= rS(t).

This ordinary differential equation can be solved exactly to give exponential
growth in the value of the saving, i.e.

S(t) = S0e
rt,
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where S0 is the initial deposit of the saving account at time t = 0.
However asset prices do not move as money invested in a risk-free bank.

It is often stated that asset prices must move randomly because of the efficient
market hypothesis. There are several different forms of this hypothesis with
different restrictive assumptions, but they all basically say two things:
• The past history is fully reflected in the present price, which does not hold

any further information;
• Markets respond immediately to any new information about an asset.

With the two assumptions above, unanticipated changes in the asset price are a
Markov process.

Under the assumptions, the classical Black–Scholes model decomposes the
return dS(t)/S(t) of the asset price into two parts. One is a predictable, de-
terministic and anticipated return akin to the return on money invested in a
risk-free bank. It gives a contribution

λdt

to the return dS(t)/S(t), where λ is a measure of the average rate of growth of
the asset price, also known as the drift. The second contribution to dS(t)/S(t)
models the random change in the asset price in response to external effects,
such as unexpected news. There are many external effects so by the well-known
central limit theorem this second contribution can be represented by a random
sample drawn from a normal distribution with mean zero and adds a term

σdB(t)

to dS(t)/S(t). Here σ is a number called the volatility , which measures the
standard deviation of the returns. The quantity dB(t) is the sample from a
normal distribution with mean zero and variance dt. Putting these contributions
together, we obtain the linear stochastic differential equation

dS(t)
S(t)

= λdt+ σdB(t)

or
dS(t) = λS(t)dt+ σS(t)dB(t), (2.2)

which is the mathematical representation of our simple recipe for generating
asset prices. This linear SDE is known as the geometric Brownian motion.

By the theory established in Chapter 3, equation (2.2) has the explicit
solution

S(t) = S0 exp
[(
λ− σ2

2

)
t+ σB(t)

]
. (2.3)

Hence the price S(t) is lognormally distributed. Note that for any constant λ,
exp[−(λ2/2)t + λB(t)] is an exponential martingale on t ≥ 0 and, therefore,
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E exp[−(λ2/2)t+ λB(t)] = 1. Making use of this fact, we can compute the nth
moment

ESn(t) = Sn
0E exp

[(
λ− σ2

2

)
nt+ nσB(t)

]
= Sn

0 exp
[(
λ− σ2

2

)
nt+

n2σ2

2
t

]
E exp

[
−n

2σ2

2
t+ nσB(t)

]
= Sn

0 exp
[
nλt+

σ2

2
n(n− 1)t

]
.

In particular, the price S(t) has the mean

ES(t) = S0e
λt

and variance

V ar(S(t)) = ES2(t)− S2
0e

2λt = S2
0e

2λt
[
eσ2t − 1

]
.

Therefore, the average of the price increases exponentially and is independent of
parameter σ. Let us now look at the individual price, i.e. the sample properties
of S(t). By the law of the iterated logarithm (i.e. Theorem 1.4.2), we can easily
show that

lim
t→∞

1
t

logS(t) = λ− σ2

2
almost surely if λ 6= σ2/2, while

lim sup
t→∞

logS(t)√
2t log log t

= σ and lim inf
t→∞

logS(t)√
2t log log t

= −σ

almost surely if λ = σ2/2. We hence conclude:
(a) S(t) →∞ almost surely exponentially if λ > σ2/2;
(b) S(t) → 0 almost surely exponentially if λ < σ2/2;
(c) lim supt→∞ S(t) = ∞ while lim inft→∞ S(t) = 0 almost surely if λ =

σ2/2.
Especially, it is interesting to observe that an individual who holds the asset
long enough would be “almost certainly ruined” if λ < σ2/2, even though in this
case the average of the price is increasing.

(ii) Mean Reverting Process

A stochastic differential equation that has been found useful in modelling
asset prices is the mean reverting model:

dS(t) = λ(µ− S(t))dt+ σS(t)dB(t). (2.4)

Especially, this is often used to model interest rate dynamics. According to
the model, as S(t) increases above some “mean value” µ (> 0), the drift term
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λ(µ − S(t)) will become negative. This makes dS(t) more likely be negative
and S(t) will decrease. On the other hand, as S(t) falls below the value µ,
λ(µ− S(t)) will become positive. This makes dS(t) more likely be positive and
S(t) will increase. Hence, we may expect that S(t) will eventually move towards
the value µ and, indeed, we shall see ES(t) → µ as t→∞. In view of the theory
of Chapter 3, we know that equation (2.4) has the explicit solution

S(t) = S0 exp
[
−(λ+ σ2/2)t+ σB(t)

]
+ λµ

∫ t

0

exp
[
−(λ+ σ2/2)(t− s) + σ(B(t)−B(s))

]
ds. (2.5)

This formula shows clearly that S(t) remains positive as long as S0 > 0. Noting

E
(

exp
[
−σ

2

2
(t− s) + σ(B(t)−B(s))

])
= 1 for 0 ≤ s ≤ t <∞,

we can compute the mean

ES(t) = S0e
−λt + λµ

∫ t

0

e−λ(t−s)ds

= S0e
−λt + µ

[
1− e−λt

]
= µ+ (S0 − µ)e−λt.

This implies
lim

t→∞
ES(t) = µ

as expected. For the variance, noting that V ar(S(t)) = ES2(t) − (ES(t))2, we
hence compute the second moment. By the Itô formula, it is easy to show that

d(ES2(t))
dt

= 2λµES(t)− (2λ− σ2)ES2(t)

= 2λµ[µ+ (S0 − µ)e−λt]− (2λ− σ2)ES2(t).

If 2λ = σ2, then

ES2(t) = S2
0 + 2λµ2t+ 2µ(S0 − µ)(1− e−λt) →∞ as t→∞,

whence V ar(S(t)) →∞ as t→∞. On the other hand, if 2λ 6= σ2, then

ES2(t) = e−(2λ−σ2)t
(
S2

0 +
∫ t

0

2λµ[µ+ (S0 − µ)e−λt]e(2λ−σ2)udu
)

= e−(2λ−σ2)t
(
S2

0 +
2λµ2

2λ− σ2
(e(2λ−σ2)t − 1) + 2µλ(S0 − µ)J(t)

)
,

where

J(t) =
∫ t

0

e(λ−σ2)udu =


1

λ− σ2
(e(λ−σ2)t − 1) if λ 6= σ2,

t if λ = σ2.
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Consequently

lim
t→∞

ES2(t) =


∞ if 2λ < σ2,

2λµ2

2λ− σ2
if 2λ > σ2.

Summarizing the arguments above gives

lim
t→∞

V ar(S(t)) =


∞ if 2λ ≤ σ2,

µ2σ2

2λ− σ2
if 2λ > σ2.

(iii) Mean Reverting Ornstein–Uhlenbeck Process

A model close to the one just discussed is the mean reverting Ornstein–
Uhlenbeck process:

dS(t) = λ(µ− S(t))dt+ σdB(t). (2.6)

In this model, the diffusion term does not depend on S(t). As a result, we shall
see that S(t) may become negative. Equation (2.6) has the explicit solution

S(t) = e−λt
(
S0 + λµ

∫ t

0

eλsds+ σ

∫ t

0

eλsdB(s)
)

= µ+ e−λt(S0 − µ) + σe−λt

∫ t

0

eλsdB(s). (2.7)

Clearly, S(t) is normally distributed with mean

ES(t) = µ+ e−λt(S0 − µ) → µ as t→∞

and variance

V ar(S(t)) =
σ2

2λ
(1− e−2λt) → σ2

2λ
as t→∞.

We therefore observe that the distribution of S(t) always approaches the normal
distribution N(µ, σ2/2λ) as t→∞ for arbitrary S0. We also observe that S(t)
may become negative but if µ > 1.5σ2/λ, the probability of S(t) being negative
is rather small for any sufficiently large t.

(iv) Square Root Process

A model close to the geometric Brownian motion is the square root process:

dS(t) = λS(t)dt+ σ
√
S(t)dB(t). (2.8)

Here the mean is made to follow an exponential trend as before, while the stan-
dard deviation is made a function of the square root of S(t), rather than S(t)
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itself. This makes the “variance” of the error term proportional to S(t). Hence,
if the asset price volatility does not increase “too much” when S(t) increases
(greater than 1, of course), this model may be more appropriate. For equation
(2.8), one may ask whether S(t) will become negative. If so,

√
S(t) would be-

come a complex number and this would not make sense in modelling an asset
price. We shall now show this is impossible. This nonnegative property is clearly
equivalent to the solution of equation

dS(t) = λS(t)dt+ σ
√
|S(t)|dB(t) (2.8)′

never becoming negative as long as the initial value S0 ≥ 0. To prove this, let
a0 = 1 and ak = e−k(k+1)/2 for every integer k ≥ 1. Note that∫ ak−1

ak

du

u
= k.

Let ψk(u) be a continuous function such that its support is contained in the
interval (ak, ak−1) where 0 ≤ ψk(u) ≤ 2/ku and, moreover,∫ ak−1

ak

ψk(u)du = 1.

Such a function exists obviously. Define ϕk(x) = 0 for x ≥ 0 and

ϕk(x) =
∫ −x

0

dy

∫ y

0

ψk(u)du for x < 0.

It is easy to see that ϕk ∈ C2(R;R);

−1 ≤ ϕ′k(x) ≤ 0 if −∞ < x < −ak or otherwise ϕ′k(x) = 0;

|ϕ′′k(x)| ≤ 2
k|x|

if − ak−1 < x < −ak or otherwise ϕ′′k(x) = 0;

moreover,
x− − ak−1 ≤ ϕk(x) ≤ x− for all x ∈ R,

where x− = −x if x < 0 or otherwise x− = 0. Now for any t ≥ 0, by Itô’s
formula we can derive that

ϕk(S(t)) = ϕk(S0) +
∫ t

0

[
λS(r)ϕ′k(S(r)) +

σ2

2
|S(r)|ϕ′′k(S(r))

]
dr

+ σ

∫ t

0

ϕ′k(S(r))
√
|S(r)|dB(r)

≤
∫ t

0

λS−(r)dr +
σ2t

k
+ σ

∫ t

0

ϕ′k(S(r))
√
|S(r)|dB(r).
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Hence

ES−(t)− ak−1 ≤ Eϕk(S(t)) ≤ λ

∫ t

0

ES−(r)dr +
σ2t

k
.

That is

ES−(t) ≤ ak−1 +
σ2t

k
+ λ

∫ t

0

ES−(r)dr.

The Gronwall inequality shows that

ES−(t) ≤
(
ak−1 +

σ2t

k

)
eλt for all t ≥ 0.

Letting k →∞ we get that ES−(t) ≤ 0 and hence we must have

ES−(t) = 0 for all t ≥ 0.

This implies
P{S(t) < 0} = 0 for all t ≥ 0.

Since S(t) is continuous we must have S(t) ≥ 0 for all t ≥ 0 almost surely. This
proves the nonnegative property of the solution of equation (2.8)′, and due to
this property we can certainly write equation (2.8)′ as equation (2.8).

(v) Mean Reverting Square Root Process

Combining the square root idea with the mean reverting one gives us the
model of the mean reverting square root process:

dS(t) = λ(µ− S(t))dt+ σ
√
S(t)dB(t). (2.9)

Again this process will never be negative. In fact, applying Itô’s formula we
have that

Eϕk(S(t)) ≤ ϕk(S0) + E

∫ t

0

[
λ(µ− S(t))ϕ′k(S(r)) +

σ2

2
|S(r)||ϕ′′k(S(r))|

]
dr

≤ σ2t

k
.

Hence

−ak−1 ≤ ES−(t)− ak−1 ≤
σ2t

k
.

Letting k →∞ we get that ES−(t) = 0 for all t ≥ 0. This implies that S(t) ≥ 0
for all t ≥ 0 almost surely.

However, we can invoke the classical Feller test for explosions (see e.g.
Karatzas and Shreve (1988)) to show the more precise result that S(t) > 0 for
all t ≥ 0 almost surely if σ2 ≤ 2λµ. In fact, the diffusion coefficient of equation
(2.9), g(x) := σ

√
x is continuous and obeys g2(x) > 0 on x ∈ (0,∞) while the

shift coefficient f(x) := λ(µ − x) is continuous on x ∈ (0,∞). By the standard
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result of ordinary differential equations, we know that for any given pair of
positive constants a and b with a < S0 < b, there is a unique solution M(x) to
the equation

f(x)M ′(x) + 1
2g

2(x)M ′′(x) = −1, a < x < b

with the boundary condition M(a) = M(b) = 0. The explicit formula for M(x)
in terms of Green’s function can be found in Karatzas and Shreve (1988, p.343)
but it is not needed here. Define the stopping times

τa = inf{t ≥ 0 : S(t) ≤ a} and τb = inf{t ≥ 0 : S(t) ≥ b}.

By the Itô formula, it is easy to show that for any t > 0,

EM(S(t ∧ τa ∧ τb)) = M(S0)− E(t ∧ τa ∧ τb), (2.10)

which gives
E(t ∧ τa ∧ τb) ≤M(S0).

Letting t→∞ yields
E(τa ∧ τb) ≤M(S0) <∞.

In other words, S(t) exits from every compact subinterval of (0,∞) in finite
expected time. We must then have P (τa ∧ τb < ∞) = 1. With this obser-
vation, we may return to (2.10), observe from the boundary condition that
limt→∞EM(S(t ∧ τa ∧ τb)) = 0, and conclude

E(τa ∧ τb) = M(S0). (2.11)

Let us now define

V (x) =
∫ x

1

exp
{
−
∫ y

1

2f(z)
g2(z)

dz

}
dy, x ∈ (0,∞).

This function has a continuous, strictly positive derivative V ′(x), and V ′′(x)
exists everywhere and obeys

V ′′(x) = −2f(x)
g2(x)

V ′(x).

The Itô formula shows that for any t > 0,

V (S(t ∧ τa ∧ τb)) = V (S0) +
∫ t∧τa∧τb

0

V ′(S(u))g(S(u))dB(u).

Taking expectations and then letting t→∞, gives

V (S0) = EV (S(τa ∧ τb)) = V (a)P (τa < τb) + V (b)P (τb < τa).
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Since two probabilities above add up to one, we see

P (τa < τb) =
V (b)− V (S0)
V (b)− V (a)

and P (τb < τa) =
V (S0)− V (a)
V (b)− V (a)

. (2.12)

Compute

V (x) =
∫ x

1

exp
{
−
∫ y

1

2λ(µ− z)
σ2z

dz

}
dy

=
∫ x

1

y−2λµ/σ2
exp

(
2λµ
σ2

(y − 1)
)
dy.

In the case when 2λµ ≥ σ2, it is easy to see that

lim
x↓0

V (x) = −∞ and lim
x↑∞

V (x) = ∞.

Define
τ0 = lim

a↓0
τa and τ∞ = lim

b↑∞
τb

and set τ = τ0 ∧ τ∞. By (2.12), we have

P
(

inf
0≤t<τ

S(t) ≤ a
)
≥ P (τa < τb) =

1− V (S0)/V (b)
1− V (a)/V (b)

. (2.13)

Letting b ↑ ∞ we get
P
(

inf
0≤t<τ

S(t) ≤ a
)

= 1.

But this holds for any a > 0. We must therefore have

P
(

inf
0≤t<τ

S(t) = 0
)

= 1.

A dual argument show

P
(

sup
0≤t<τ

S(t) = ∞
)

= 1.

Suppose now that P (τ <∞) > 0; then

P
(

lim
t→τ

S(t) exists and is equal to 0 or ∞
)
> 0.

So {inf0≤t<τ S(t) = 0} and {sup0≤t<τ S(t) = ∞} cannot both have probability
one. This contradiction shows that P (τ <∞) = 0. In summary, we have

P (τ = ∞) = P
(

inf
0≤t<∞

S(t) = 0
)

= P
(

sup
0≤t<∞

S(t) = ∞
)

= 1 (2.14)

if σ2 ≤ 2λµ.
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Let us now consider the case when σ2 > 2λµ. In this case, we have

V (0+) =: lim
x↓0

V (x) > −∞ and lim
x↑∞

V (x) = ∞.

We can still show from (2.13) that

P
(

inf
0≤t<τ

S(t) = 0
)

= 1.

But letting a ↓ 0 in the second equality of (2.12) gives

P (τb < τ0) =
V (S0)− V (0+)
V (b)− V (0+)

.

Letting now b→∞ implies P (τ∞ < τ0) = 0, namely P (sup0≤t<τ S(t) = ∞) = 0.
We can hence conclude that

P
(

inf
0≤t<τ

S(t) = 0
)

= P
(

sup
0≤t<τ

S(t) <∞
)

= 1 (2.15)

if σ2 > 2λµ.
Moreover, the solution of equation (2.9) still has the mean reverting trend

ES(t) = µ+ e−λt(S0 − µ) → µ as t→∞.

It is particularly interesting to observe that when the parameters λ, σ and µ
have the relation

λµ =
σ2

4
,

the square root
√
S(t) is an Ornstein–Uhlenbeck process:

d
√
S(t) = −λ

2

√
S(t)dt+

σ

2
dB(t) (2.16)

whose solution is√
S(t) =

√
S0e

−λt/2 +
σ

2

∫ t

0

e−λ(t−s)/2dB(s).

(vi) Theta Process

Another useful model is the theta process described by the stochastic dif-
ferential equation

dS(t) = λS(t)dt+ σSθ(t)dB(t), (2.17)

where θ is a constant no less than 0.5. For example, Lewis (2000) assumed
θ ∈ [0.5, 1.5] while Chan et al. (1992) recommended θ ≥ 1. We observe that
equation (2.17) becomes the classical geometric Brownian motion if θ = 1 while
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it is the square root process if θ = 0.5. When θ ∈ (0.5, 1), we can show in a
similar way as in the case of the square root process that for any initial value
S0 > 0 equation (2.17) has a unique nonnegative solution on t ≥ 0.

When θ > 1, one would have a feeling that the solution to equation (2.17)
might explode to infinity in a finite time. However, we claim that if θ > 1,
then for any given initial value S0 > 0 there is a unique global solution S(t) to
equation (2.17) on t ≥ 0 and the solution will remain positive with probability
1, namely 0 < S(t) < ∞ for all t ≥ 0 almost surely. In fact, as the coefficients
of equation (2.17) are locally Lipschitz continuous in (0,∞), we can show by
the truncation technique as in the proof of Theorem 2.3.4 that there is a unique
local solution S(t) on t ∈ [0, τ∞), where τ∞ = limk→∞ τk and

τk = inf{t ∈ [0, τ∞) : S(t) 6∈ (1/k, k)}, k ≥ k0

in which k0 > 0 is sufficiently large for S0 ∈ [1/k0, k0]. Clearly, all we need
to show is that τ∞ = ∞ a.s. If this statement is false, then there is a pair of
constants T > 0 and ε ∈ (0, 1) such that

P (τ∞ ≤ T ) > ε.

Hence there is an integer k1 ≥ k0 such that

P (τk ≤ T ) ≥ ε for all k ≥ k1. (2.18)

Define a C2-function V : (0,∞) → R+ by

V (S) =
√
S − 1− 0.5 log(S), S > 0.

If S(t) ∈ (0,∞), the Itô formula shows that

dV (S(t)) = 0.5(S−0.5(t)− S−1(t))[λS(t)dt+ σSθ(t)dB(t)]

+ 0.25(−0.5S−1.5(t) + S−2(t))σ2S2θ(t)dt

= F (S(t))dt+ 0.5σ(S−0.5(t)− S−1(t))Sθ(t)dB(t),

where

F (S) = 0.5λ(S0.5 − 1) + 0.25σ2S2θ−2 − 0.125σ2S2θ−1.5, S ∈ (0,∞).

Obviously, F (S) is bounded, say by K, on S ∈ (0,∞). We therefore obtain

dV (S(t)) ≤ Kdt+ 0.5σ(S−0.5(t)− S−1(t))Sθ(t)dB(t)

as long as S(t) ∈ (0,∞). Whence integrating both sides from 0 to τk ∧ T , and
then taking expectations, yields

EV (S(τk ∧ T )) ≤ V (S0) +KE(τk ∧ T ) ≤ V (S0) +KT. (2.19)
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Set Ωk = {τk ≤ T} for k ≥ k1 and, by (2.18), P (Ωk) ≥ ε. Note that for every
ω ∈ Ωk, S(τk, ω) equals either k or 1/k, and hence V (S(τk, ω)) is no less than
either √

k − 1− 0.5 log(k)

or √
1/k − 1− 0.5 log(1/k) =

√
1/k − 1 + 0.5 log(k).

Consequently,

V (S(τk, ω)) ≥
[√

k − 1− 0.5 log(k)
]
∧
[
0.5 log(k)− 1

]
.

It then follows from (2.19) that

V (S0) +KT ≥ E
[
IΩk

(ω)V (x(τk, ω))
]

≥ ε
([√

k − 1− 0.5 log(k)
]
∧
[
0.5 log(k)− 1

])
.

Letting k →∞ leads to the contradiction

∞ > V (S0) +KT = ∞ ,

so we must have τ∞ = ∞ a.s.

(vii) Mean Reverting Theta Process

Combining the idea of theta process with the mean reverting one gives us
the mean reverting theta process

dS(t) = λ(µ− S(t))dt+ σSθ(t)dB(t), (2.20)

where θ ≥ 0.5. This reduces to the mean reverting process when θ = 1 while it
is the mean reverting square root process when θ = 0.5. When θ ∈ (0.5, 1), we
can show in the same way in the case of the mean reverting square root process
that S(t) > 0 for all t ≥ 0 almost surely. When θ > 1, we can show in the same
way as in the case of the theta process that S(t) > 0 for all t ≥ 0 almost surely.

(viii) Stochastic Volatility

In all the previous models, the drift and diffusion parameters are constants.
However, much more general models can be obtained by making these parame-
ters random. Such models may have useful applications, since they allow us to
consider the volatility not only time-varying but also random given the S(t). For
example, consider an asset price described by the stochastic differential equation

dS(t) = λS(t)dt+ σ(t)S(t)dB(t), (2.21)
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where λ is a positive constant as before, while the volatility σ(t) is assumed to
change over time. More specifically, σ(t) is assumed to change according to an
Ornstein–Uhlenbeck process

dσ(t) = −βσ(t)dt+ δdB̃(t), (2.22)

with initial value σ(0) = σ0, where β, δ are positive constants and B̃(t) is another
Brownian motion independent of B(t) (it is also possible to discuss the dependent
case). We can solve the equations explicitly:

S(t) = S0 exp
[
λt− 1

2

∫ t

0

σ2(s)ds+
∫ t

0

σ(s)dB(s)
]
,

where

σ(t) = σ0e
−βt + δ

∫ t

0

e−β(t−s)dB̃(s).

We see clearly that σ(t) is normally distributed with mean σ0e
−βt and variance

(δ2/2β)(1 − ε−2βt). Hence, in a long-run, σ(t) will follow the normal distribu-
tion N(0, δ2/2β). Recalling the model of geometric Brownian motion, we can
reasonably guess that with probability

P
{σ2(t)

2
> λ

}
= 2P{σ(t) >

√
2λ} ≈ 1− 2Erf

(2
√
λβ

δ

)
the S(t) will tend to zero. Alternatively, we may assume that the volatility σ(t)
follows a mean reverting process

dσ(t) = β(σ − σ(t))dt+ δσ(t)dB̃(t), (2.23)

where σ is a positive constant. In this case, the volatility of the asset has a
long-run mean σ. We might therefore guess that if σ2/2 > λ, the asset price
would be most likely ruined.

As one more example, the Heston stochastic volatility model assumes that
V (t) = σ2(t) obeys the mean reverting square root process

dV (t) = β(σ2 − V (t))dt+ δ
√
V (t)dB̃(t).

Clearly, using such layers of stochastic differential equations we can obtain more
and more general models for representing the financial phenomena in real life.

9.3 OPTIONS AND THEIR VALUES

The stochastic differential equations discussed in the previous section de-
scribe the dynamics of asset prices. One of the important issues in finance is to
price options based on the dynamics of asset prices.
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(i) Options

There are various options and let us begin with the simplest European call
option.

Definition 3.1 A European call option gives its holder the right (but not the
obligation) to purchase from the writer a prescribed asset for a prescribed price
at a prescribed time in the future.

The prescribed purchase price is known as the exercise price or strike price,
and the prescribed time in the future is known as the expiry date.

For example, today (1st January 2007) Professor Mao (the writer) writes a
European call option that gives you (the holder) the right to buy 200 shares in
Mao’s for $1.20 each on 1st January 2008. On 1st January 2008 you would then
take one of two actions:
(a) if the actual value of a Mao’s share turns out to be more than $1.20 you

would exercise your right to buy the shares from Professor Mao—for you
could immediately sell them for a profit.

(b) if the actual value of a Mao’s share turns out to be less than $1.20 you
would not exercise your right to buy the shares from Professor Mao—the
deal is not worthwhile.

Note that because you are not obliged to purchase the shares, you do not lose
money (in case (a) you gain money while in case (b) you neither gain nor lose).
Professor Mao on the other hand will not gain any money on 1st January 2008
and may lose an unlimited amount. To compensate for this imbalance, when the
option is agreed on 1st January 2007 you would be expected to pay Professor
Mao an amount of money known as the value of the option. The key question
that we address in this Section is

How much should the holder pay for the privilege of holding the option? In
other words, how do we compute a fair price for the value of the option?

We leave the answer to this question to the next subsections but introduce a few
more other types of options. The direct opposite of a European call option is a
European put option.

Definition 3.2 A European put option gives its holder the right (but not the
obligation) to sell to the writer a prescribed asset for a prescribed price at a
prescribed time in the future.

It is useful to identify the payoff or value at the expiry date of an option.
Let K denote the exercise price and S the asset price at the expiry date. (Of
course, S is not known at the time when the option is taken out.) At the expiry
date, if S > K it makes financial sense for the holder of a European call option
to exercise the call option, buying the asset for K and selling it for S, gaining
an amount S − K. On the other hand, if S ≤ K at expiry, then the holder
gains nothing and the option expires worthless. Thus, the payoff or value of the
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European call option at the expiry date is

max(S −K, 0).

Similarly, we can show that the payoff or value of the European put option at
the expiry date is

max(K − S, 0).

There are many other types of options available. They include:
• American calls and puts. An American call option with strike price K

and expiry date T gives the holder the right but not the obligation to buy
from the writer an asset for price K at any time up to T . An American
put option with strike price K and expiry date T gives the holder the right
but not the obligation to sell to the writer an asset for price K at any time
up to T .

• Lookback call. A lookback call gives the holder the right to buy an asset
at expiry date T for a price equal to the minimum achieved by the asset up
to time T .

• Digital option. A digital option pays out a pre-agreed amount A if the
asset price exceeds the strike price K at the expiry date, otherwise it is
worthless.

• Barrier options. A barrier option is one that is activated or deactivated
if the asset price crosses a preset barrier. There are two basic types:
knock-ins
(a) the barrier is up-and-in if the option is only active if the barrier is hit

from below,
(a) the barrier is down-and-in if the option is only active if the barrier is

hit from above;
knock-outs
(a) the barrier is up-and-out if the option is worthless if the barrier is hit

from below,
(b) the barrier is down-and-out if the option is worthless if the barrier is

hit from above.
• Asian option. The payoff at the expiry date depends on the average of

the asset price between the start and expiry dates.
For illustration, let the start date be 0 and the expiry date T . Denote

by S(t), 0 ≤ t ≤ T the price of the underlying asset over the duration of the
contract. The payoff of a lookback call at the expiry date is then

S(T )− min
0≤t≤T

S(t),

and the payoff of a digital option is

AI{S(T )>K}.
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An up-and-out call option is worthless if the asset price exceeds some pre-agreed
barrier c some time before T , otherwise it pays out max{S(T ) −K), 0} at the
expiry date. That is, the payoff at the expiry date is

max{S(T )−K), 0} I{max0≤t≤T S(t)≤c}.

An down-and-in put option pays out max{K−S(T ), 0} at the expiry date if the
asset price fell below the pre-agreed barrier c some time before T , otherwise it
is worthless. That is, the payoff at the expiry date is

max{K − S(T )), 0} I{min0≤t≤T S(t)≤c}.

Moreover, the payoff of an asian option at the expiry date is proportional to

1
T

∫ T

0

S(t)dt.

(ii) The Black–Scholes PDE

After the discussion of various options, we can now return to our key ques-
tion: how do we compute a fair price for the value of the option? Before de-
scribing the Black–Scholes analysis which leads to the value of an option we list
the assumptions that we make for this section.
• The asset price follows the geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dB(t). (3.1)

• The risk-free interest rate r and the asset volatility σ are known constants
over the life of the option.

• There are no transaction costs associated with hedging a portfolio.
• The underlying asset pays no dividends during the life of the option.
• There are no arbitrage possibilities.
• Trading of the underlying asset can take place continuously.
• Short selling is permitted and the assets are divisible.

Suppose that we have a call or put option whose value V (S, t) depends only
on S(t) = S and t. Using Itô’s formula, we have

dV (S, t) =
(∂V (S, t)

∂t
+ µS

∂V (S, t)
∂S

+ 1
2σ

2S2 ∂
2V (S, t)
∂S2

)
dt

+ σS
∂V (S, t)
∂S

dB(t). (3.2)

This gives the SDE followed by V . Note that we require V to be differentiable
continuously at least twice in S and once in t.
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Now construct a portfolio consisting of one option and a number −∆ of the
underlying asset. This number is as yet unspecified. The value of this portfolio
is

Π(S, t) = V (S, t)−∆S. (3.3)

The jump in value of this portfolio in one time-step is

dΠ(S, t) = dV (S, t)−∆dS.

Here ∆ is held fixed during the time-step; if it were not then dΠ would contain
terms in d∆. Putting (3.1)-(3.3) together, we find that Π is an Itô process with
the stochastic differential

dΠ(S, t) =
(∂V (S, t)

∂t
+ µS

∂V (S, t)
∂S

+ 1
2σ

2S2 ∂
2V (S, t)
∂S2

− µ∆S
)
dt

+ σS
(∂V (S, t)

∂S
−∆

)
dB(t). (3.4)

To eliminate the random component, we choose

∆ =
∂V (S, t)
∂S

. (3.5)

Note that ∆ is the value of ∂V/∂S at the start of the time-step dt. This results
in a portfolio whose increment is wholly deterministic:

dΠ(S, t) =
(∂V (S, t)

∂t
+ 1

2σ
2S2 ∂

2V (S, t)
∂S2

)
dt. (3.6)

We now appeal to the concepts of arbitrage and supply and demand, with
the assumption of no transaction costs. The return on an amount Π invested in
riskfree assets would see a growth of rΠdt in a time dt. If the right-hand side of
(3.6) were greater than this amount, an arbitrager could make a guaranteed risk-
less profit by borrowing an amount Π to invest in the portfolio. The return for
this riskfree strategy would be greater than the cost of borrowing. Conversely, if
the right-hand side of (3.6) were less than rΠdt then the arbitrager could short
the portfolio and invest Π in the bank. Either way the arbitrager would make
a risk-less, no cost, instantaneous profit. The existence of such arbitragers with
the ability to trade at low cost ensures that the return on the portfolio and on
the risk-less account are more or less equal. Thus, we have

rΠ(S, t)dt =
(∂V (S, t)

∂t
+ 1

2σ
2S2 ∂

2V (S, t)
∂S2

)
dt. (3.7)

Substituting (3.3) and (3.5) into (3.7) and dividing throughout by dt we arrive
at

∂V (S, t)
∂t

+ 1
2σ

2S2 ∂
2V (S, t)
∂S2

+ rS
∂V (S, t)
∂S

− rV (S, t) = 0. (3.8)
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This is the Black–Scholes PDE.
Before we moving on, let us remark that the Black–Scholes PDE (3.8) does

not contain the growth parameter µ. The only parameter from the SDE (3.1)
for the asset price that affects the option price is the volatility σ. A consequence
of this is that two people may differ in their estimates for µ yet still agree on
the value of an option. (See Remark 3.4 below for more comments.)

Having derived the Black–Scholes PDE for the value of an option, we must
consider final conditions, for otherwise the PDE does not have a unique solution.
We first discuss a European call option, with value now denoted by C(S, t)
instead of V (S, t), with exercise price K and expiry date T . In the previous
subsection we have shown that the value of the call option at expiry is

C(S, T ) = max(S −K, 0). (3.9)

This is the final condition for the Black–Scholes PDE. For a put option, with
value P (S, t) instead of V (S, t), we have

P (S, T ) = max(K − S, 0). (3.10)

(iii) Put-call Parity

Although call and put options are superficially different, in fact they can be
combined in such a way that they are perfectly correlated. This is demonstrated
by the following argument.

Suppose that we are long one asset, long one put and short one call at time
t. The call and the put both have the same expiry date, T , and the same exercise
price, K. Denote by Π the value of this portfolio, namely

Π = S + P (S, t)− C(S, t),

where P and C are the values of the put and the call respectively. The payoff
for this portfolio at expiry is

S(T ) + max(K − S(T ), 0)−max(S(T )−K, 0) = K. (3.11)

In other words, whether S(T ) is greater or less than K at expiry the payoff is
always the same, namely K. The question is:

How much would I pay for the portfolio that gives a guaranteed K at time T?

By discounting the final value of this portfolio, it is now worth Ke−r(T−t). This
equates the return from the portfolio with the return from a bank deposit. If
this were not the case then arbitragers could (and would) make an instantaneous
risk-less profit: by buying and selling options and shares and at the same time
borrowing or lending money in the correct proportions, they could lock in a
profit today with zero payoff in the future. Thus we conclude that

S + P (S, t)− C(S, t) = Ke−r(T−t). (3.12)
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This relationship between the underlying asset and its options is called put-call
parity.

(iv) The Black–Scholes Formula

We have just shown that if an asset price moves according to the geometric
Brownian motion (3.1), then the value C(S, t) of the European call option on
the asset price S at time t satisfies the Black-Scholes PDE (3.8) on S > 0 and
t ∈ [0, T ], where r is the risk-free interest rate and σ is the volatility. Moreover,
the call option value has the final payoff (3.9) as the final condition. To price
the European call option, all we need is to solve the PDE (3.8) along with the
final condition (3.9). If we obtain the explicit solution V to the PDE while we
know the asset price S at time t, then its option price is simply V (S, t).

Theorem 3.3 (The Black–Scholes formula for the European call option)
The explicit solution to the PDE (3.8) is given by

C(S, t) = SN(d1)−Ke−r(T−t)N(d2), (3.13)

where N(x) is the cumulative probability distribution of standard normal distri-
bution, namely

N(x) =
1√
2π

∫ x

−∞
e−

1
2 z2

dz,

while

d1 =
log(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

and

d2 =
log(S/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

.

Proof. Given any pair of S > 0 and t ∈ [0, T ], we introduce an SDE

dx(u) = rx(u)du+ σx(u)dB(u) on t ≤ u ≤ T (3.14)

with initial value x(t) = S at u = t. In Chapter 3 we showed that this linear
SDE can be solved explicitly. In particular, we have

x(T ) = S exp
[
(r − 1

2σ
2)(T − t) + σ(B(T )−B(t))

]
. (3.15)

Let us now define a C2,1-function

V (x, u) = C(x, u)er(T−u), (x, u) ∈ (0,∞)× [t, T ].

Here C(x, u) satisfies the Black–Scholes PDE (3.8), that is (in x and u rather
than S and t),

∂C

∂u
+ 1

2σ
2x2 ∂

2C

∂x2
+ rx

∂C

∂x
− rC = 0. (3.16)
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Compute

∂V

∂u
=
(∂C
∂u

− rC
)
er(T−u),

∂V

∂x
=
∂C

∂x
er(T−u),

∂2V

∂2x
=
∂2C

∂2x
er(T−u).

By the Itô formula

dV (x(u), u) =
[
∂V (x(u), u)

∂u
+
∂V (x(u), u)

∂x
rx(u) +

1
2
∂2V (x(u), u)

∂2x
σ2x2(u)

]
du

+
∂V (x(u), u)

∂x
σx(u)dW (u)

= er(T−u)

[
∂C(x(u), u)

∂u
− rC(x(u), u) + rx(u)

∂V (x(u), u)
∂x

+ 1
2σ

2x2(u)
∂2V (x(u), u)

∂2x

]
du

+ σx(u)er(T−u) ∂C(x(u), u)
∂x

dB(u).

Using (3.16) we see that

dV (x(u), u) =
∂V (x(u), u)

∂x
σx(u)dB(u).

Integrating both sides from u = t to u = T yields

V (x(T ), T )− V (x(t), t) =
∫ T

t

∂V (x(u), u)
∂x

σx(u)dB(u).

Taking expectations and recalling the property of Itô’s integrals we obtain

EV (x(T ), T )− EV (x(t), t) = 0.

Note
V (x(T ), T ) = C(x(T ), T ) = max(x(T )−K, 0)

while
V (x(t), t) = C(x(t), t)er(T−t) = C(S, t)er(T−t).

Thus
E[max(x(T )−K, 0)]− C(S, t)er(T−t) = 0,

that is
C(S, t) = e−r(T−t)E[max(x(T )−K, 0)]. (3.17)

Note that

log(x(T )) = log(S) +
(
r − 1

2
σ2
)
(T − t) + σ(B(T )−B(t)) ∼ N(µ̂, σ̂2),
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where
µ̂ = log(S) +

(
r − 1

2
σ2
)
(T − t), σ̂ = σ

√
T − t.

Hence

Z :=
log(x(T ))− µ̂

σ̂
∼ N(0, 1)

which gives
x(T ) = eµ̂+σ̂Z .

Moreover, if x(T )−K ≥ 0, then eµ̂+σ̂Z ≥ K, namely

Z ≥ log(K)− µ̂

σ̂
.

Hence
E[max(x(T )−K, 0)] = E

[
max

(
eµ̂+σ̂Z −K, 0

)]
=
∫ 8

log(K)−µ̂
σ̂

(
eµ̂+σ̂z −K

) 1√
2π
e−

1
2 z2

dz.

Compute

log(K)− µ̂

σ̂
=

log(K)− log(S)−
(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

= −
log(S/K) +

(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

= −d2.

So

E[max(x(T )−K, 0)] =
1√
2π

∫ ∞

−d2

(
eµ̂+σ̂z −K

)
e−

1
2 z2

dz

=
1√
2π

∫ ∞

−d2

eµ̂+σ̂z− 1
2 z2

dz − K√
2π

∫ ∞

−d2

e−
1
2 z2

dz. (3.18)

But
1√
2π

∫ ∞

−d2

e−
1
2 z2

dz =
1√
2π

∫ d2

−∞
e−

1
2 z2

dz = N(d2), (3.19)

while

1√
2π

∫ ∞

−d2

eµ̂+σ̂z− 1
2 z2

dz =
1√
2π

∫ ∞

−d2

eµ̂+
1
2 σ̂2− 1

2 (z−σ̂)2dz

=
eµ̂+

1
2 σ̂2

√
2π

∫ ∞

−d2

e−
1
2 (z−σ̂)2dz =

eµ̂+
1
2 σ̂2

√
2π

∫ ∞

−(d2+σ̂)

e−
1
2x2

dx

=
eµ̂+

1
2 σ̂2

√
2π

∫ d2+σ̂

−∞
e−

1
2x2

dx =
eµ̂+

1
2 σ̂2

√
2π

N(d2 + σ̂)

=
eµ̂+

1
2 σ̂2

√
2π

N(d1), (3.20)



Sec.9.3] Options and Their Values 323

since d2 + σ̂ = d1. Substituting (3.19) and (3.20) into (3.18) yields

E[max(x(T )−K, 0)] =
eµ̂+

1
2 σ̂2

√
2π

N(d1)−KN(d2).

Substituting this into (3.17) gives

C(S, t) = e−r(T−t)

(
eµ̂+

1
2 σ̂2

N(d1)−KN(d2)
)

= N(d1) exp
[
− r(T − t) + logS + (r − 1

2σ
2)(T − t) + 1

2σ
2(T − t)

]
−Ke−r(T−t)N(d2)

= SN(d1)−Ke−r(T−t)N(d2)

as required. The proof is therefore complete.

Remark 3.4 Let us make some comments on (3.17). Assume that given the
asset price S at time t, a holder signs a European call option with the expiry date
T and the exercise price K. Assume also that the market volatility σ and the
risk-free interest rate r are known at time t and will remain the same during the
duration of the call option. Regardless whatever the growth rate µ the holder
may think, the fair option value should be priced based on the SDE (3.14) rather
than

dX(u) = µX(u)du+ σX(u)dB(u), t ≤ u ≤ T, X(t) = S,

the individual SDE the holder may think. Hence the expected payoff at the
expiry date T is

E[max(x(T )−K, 0)].

By discounting this expected value in future, it is now worth

e−r(T−t)E[max(x(T )−K, 0)],

which gives the value C(S, t) of the call option, the same as (3.17).

Once we have the formula for the European call option we can easily obtain
the corresponding formula for the European put option. Let P (S, t) be the value
of the European put option on the asset price S at time t. The value of the put
option at expiry can be written as

P (S, T ) = max(K − S, 0).

By the put-call parity we have

S + P (S, t)− C(S, t) = Ke−r(T−t)

Thus
P (S, t) = Ke−r(T−t) + C(S, t)− S.
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Substituting (3.13) into this gives

P (S, t) = Ke−r(T−t) + SN(d1)−Ke−r(T−t)N(d2)− S

= Ke−r(T−t)N(−d2)− SN(−d1).

Theorem 3.5 (The Black–Scholes formula for the European put option)
The value of the European put option on the asset price S at time t is given by

P (S, t) = KN(−d2)e−r(T−t) − SN(−d1), (3.21)

where d1 and d2 are the same as before.

(v) Monte Carlo Simulations

The Black–Scholes formula benefits from the explicit solution of the geo-
metric Brownian motion. However, most of SDEs used in finance, as showed in
Section 9.2, do not have explicit solutions. Hence, numerical methods and Monte
Carlo simulations have become more and more popular in option valuation.

Typically, let us consider in this subsection the mean-reverting square root
process

dS(t) = λ(µ− S(t))dt+ σ
√
S(t)dB(t), 0 ≤ t ≤ T. (3.22)

Here λ, µ and σ are positive constants. There are numerous examples in the
literature where SDEs are discretized, typically with an Euler-type scheme. In
the finance context, there are two main motivations for such simulations:
• using a Monte Carlo approach to compute the expected value of a function

of S(t), for example to value a bond or to find the expected payoff of an
option;

• generating time series in order to test parameter estimation algorithms.
A numerical method, e.g. the Euler–Maruyama discussed in Section 2.7,

applied to (3.22) may break down due to negative values being supplied to the
square root function. A natural fix, which we adopt here, is to replace the SDE
(3.22) by the equivalent, but computationally safer, problem

dS(t) = λ(µ− S(t))dt+ σ
√
|S(t)|dB(t), 0 ≤ t ≤ T. (3.23)

Given a stepsize ∆ > 0, the Euler–Maruyama (EM) method applied to (3.23)
sets s0 = S(0) and computes approximations sn ≈ S(tn), where tn = n∆,
according to

sn+1 = sn(1− λ∆) + λ∆µ+ σ
√
|sn|∆Bn, (3.24)

where ∆Bn = B(tn+1)−B(tn).
Let us now consider the error in the numerical solution, measured in strong

L2 sense. In the convergence analysis it is usually more convenient to work with
the continuous-time approximation s(t) defined by

s(t) := sn+(t−tn)λ(µ−sn)+σ
√
|sn|(B(t)−B(tn)), for t ∈ [tn, tn+1). (3.25)
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A more useful characterization of s(t) for the purpose of analysis is

s(t) := s0 +
∫ t

0

λ(µ− s̄(u))du+ σ

∫ t

0

√
|s̄(u)|dB(u), (3.26)

where the “step process” s̄(t) is defined by

s̄(t) := sn, for t ∈ [tn, tn+1). (3.27)

Note that s(t) and s̄(t) coincide with the discrete solution at the gridpoints;
s̄(tn) = s(tn) = sn. The ability of the discrete method (3.24) to approximate
the true solution at the discrete points {tn} is guaranteed by the ability of either
s(t) or s̄(t) to approximate S(t) which is described by the following theorem.

Theorem 3.6 In the notation above,

lim
∆→0

E
(

sup
0≤t≤T

|s(t)− S(t)|2
)

= 0. (3.28a)

and
lim
∆→0

(
sup

0≤t≤T
E|s̄(t)− S(t)|2

)
= 0. (3.28b)

The proof is very technical so we just refer the reader to Higham and Mao
(2005) where the detailed proof can be found. Before we proceed to discuss the
numerical approximation to the option values, let us make a useful remark.

Remark 3.7 To avoid breaking down of the EM method due to negative values
being supplied to the square root function, we have replaced the SDE (3.22)
by the equivalent, but computationally safer, equation (3.23). Alternatively, we
may use another equivalent equation

dS(t) = λ(µ− S(t))dt+ σ
√
S(t) ∨ 0 dB(t), 0 ≤ t ≤ T. (3.29)

Accordingly, the EM method applied to (3.29) sets s0 = S(0) and computes
approximations sn ≈ S(tn) according to

sn+1 = sn(1− λ∆) + λ∆µ+ σ
√
sn ∨ 0 ∆Bn. (3.30)

The continuous-time approximation s(t) as well as the step process can then
be defined by (3.26) and (3.27), respectively, and they still obey (3.28a) and
(3.28b). In theory, there is no different by using (3.23) or (3.29). However,
numerical simulations seem indicate that it is slightly better to use (3.29) than
(3.23). In the remaining of this subsection, we will only use property (3.28a)
and (3.28b) but it does not matter whether s(t) and s̄(t) are defined based on
(3.23) or (3.29).
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Let us now begin to show the numerical ability approximate some financial
quantities. In the case where S(t) in (3.22) models short-term interest rate
dynamics, it is pertinent to consider the expected payoff

β := E exp

(
−
∫ T

0

S(t)dt

)
(3.31)

from a bond. A natural approximation based on the EM method is

β∆ := E exp

(
−∆

N−1∑
n=0

|sn|

)
,

where N∆ = T . It is convenient to rewrite this as

β∆ = E exp

(
−
∫ T

0

|s̄(t)|dt

)
, (3.32)

using the step function s̄(t) in (3.27). The following result shows that the strong
convergence (3.28) of the SDE approximation confers convergence in this sce-
nario.

Theorem 3.8 In the notation above,

lim
∆→0

|β − β∆| = 0.

Proof. Using e−|x| − e−|y| ≤ |x− y| and the non-negativity of S(t), we have

|β − β∆| = E

[
exp

(
−
∫ T

0

S(t)dt

)
− exp

(
−
∫ T

0

|s̄(t)|dt

)]

≤ E

∣∣∣∣∣
∫ T

0

S(t)dt−
∫ T

0

|s̄(t)|dt

∣∣∣∣∣
≤ E

∫ T

0

|S(t)− |s̄(t)|| dt

≤ E

∫ T

0

|S(t)− s̄(t)| dt

≤ T sup
[0,T ]

(
E |S(t)− s(t)|+ E |s(t)− s̄(t)|

)
.

Applying Theorem 3.6 completes the proof.
We now consider the case where the mean-reverting square root process

(3.22) models the price of an asset on which an option has been written. In
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this case the expected payoff from the option is of relevance (see Remark 3.4).
To show the ability of the EM method to approximate the option value, let
us typically consider an up-and-out call option, which, at expiry time T , pays
the European value with the exercise price K if S(t) never exceeded the fixed
barrier, c, and pays zero otherwise. We suppose that the expected payoff is
computed from a Monte Carlo simulation based on the EM method. Here, using
the discrete numerical solution to approximate the true path gives rise to two
distinct sources of error:
• a discretization error due to the fact that the path is not followed exactly—

the numerical solution may cross the barrier at time tn when the true
solution stays below, or vice versa,

• a discretization error due to the fact that the path is only approximated at
discrete time points—for example, the true path may cross the barrier and
then return within the interval (tn, tn+1).

The following theorem uses the strong convergence property to show that the
expected payoff from the numerical method converges to the correct expected
payoff as ∆ → 0. Note that using the step function s̄(t) in (3.34) is equivalent
to using the discrete-time approximation.

Theorem 3.9 Define

V :=E
[
(S(T )−K)+I{0≤S(t)≤c, 0≤t≤T}

]
, (3.33)

V∆ :=E
[
(s̄(T )−K)+I{0≤s̄(t)≤B, 0≤t≤T}

]
, (3.34)

where x+ = max(x, 0). Then

lim
∆→0

|V − V∆| = 0. (3.35)

Proof. Let A := {0 ≤ S(t) ≤ c, 0 ≤ t ≤ T} and A∆ := {0 ≤ s̄(t) ≤ c, 0 ≤ t ≤
T}. Making use of the inequality

|(S(T )−K)+ − (s̄(T )−K)+| ≤ |S(T )− s̄(T )|,

we have

|V − V∆| ≤ E
∣∣(S(T )−K)+IA − (s̄(T )−K)+IA∆

∣∣
≤ E

(∣∣(S(T )−K)+ − (s̄(T )−K)+
∣∣ IA∩A∆

)
+ E

(
(S(T )−K)+IA∩Ac

∆

)
+ E

(
(s̄(T )−K)+IAc∩A∆

)
≤ E (|S(T )− s̄(T )|IA∩A∆) + (B − E)P (A ∩Ac

∆) + (B − E)P (Ac ∩A∆).

Now, from Theorem 3.6, we have lim∆→0E(|S(T ) − s̄(T )|) = 0. Hence, our
proof is complete if we can show that

lim
∆→0

P (A ∩Ac
∆) = 0 (3.36)
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and
lim
∆→0

P (Ac ∩A∆) = 0. (3.37)

For any sufficiently small δ, we have

A = { sup
0≤t≤T

S(t) ≤ c}

= { sup
0≤t≤T

S(t) ≤ c− δ} ∪ {c− δ < sup
0≤t≤T

S(t) ≤ c}

⊆ { sup
0≤k∆≤T

S(k∆) ≤ c− δ} ∪ {c− δ < sup
0≤t≤T

S(t) ≤ c}

=: Ā1 ∪ Ā2.

Hence,
A ∩Ac

∆ ⊆ (Ā1 ∩Ac
∆) ∪ (Ā2 ∩Ac

∆)
⊆ { sup

0≤k∆≤T
|S(k∆)− s̄(k∆)| ≥ δ} ∪ Ā2.

So,
P (A ∩Ac

∆) ≤P ( sup
0≤k∆≤T

|S(k∆)− s̄(k∆)| ≥ δ) + P (Ā2)

≤ 1
δ2
E

(
sup

0≤k∆≤T
(S(k∆)− s̄(k∆))2

)
+ P (Ā2).

Now, for any ε > 0, we may choose δ so small that

P (Ā2) < 0.5ε

and then choose ∆ so small that

1
δ2
E

(
sup

0≤k∆≤T
(S(k∆)− s̄(k∆))2

)
< 0.5ε,

whence P (A ∪Ac
∆) < ε. This confirms (3.36).

Now, for any δ > 0, we write

Ac = { sup
0≤t≤T

S(t) > c}

= { sup
0≤t≤T

S(t) > c+ δ} ∪ {c < sup
0≤t≤T

S(t) ≤ c+ δ}

=: Ā3 ∪ Ā4.

So

P (Ac ∩A∆) ≤P (Ā3 ∩A∆) + P (Ā4 ∩A∆)
≤ P ( sup

0≤t≤T
|S(t)− s̄(t)| > δ) + P (Ā4). (3.38)
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Define

s?(t) =
∞∑

k=0

S(k∆)I[k∆,(k+1)∆)(t), 0 ≤ t ≤ T,

and note that

{ sup
0≤t≤T

|S(t)− s̄(t)| > δ}

⊆ { sup
0≤t≤T

|S(t)− s?(t)| > 0.5δ} ∪ { sup
0≤t≤T

|s?(t)− s̄(t)| > 0.5δ}

= { sup
0≤k∆≤T

sup
k∆≤t≤(k+1)∆

|S(t)− S(k∆)| > 0.5δ}

+ { sup
0≤k∆≤T

|S(k∆)− s(k∆)| > 0.5δ}.

Thus

P ( sup
0≤t≤T

|S(t)− s̄(t)| > δ} ≤ P ( sup
0≤k∆≤T

sup
k∆≤t≤(k+1)∆

|S(t)− S(k∆)| > 0.5δ)

+
4
δ2
E( sup

0≤k∆≤T
(S(k∆)− s(k∆))2). (3.39)

Because S(t) is a continuous process in t ∈ [0, T ], almost every sample path of
S(·) is uniformly continuous on [0, T ]. This immediately implies

lim
∆→0

P ( sup
0≤k∆≤T

sup
k∆≤t≤(k+1)∆

|S(t)− S(k∆)| > 0.5δ) = 0.

We also know from Theorem 3.6 that

lim
∆→0

E( sup
0≤k∆≤T

(S(k∆)− s(k∆))2) = 0.

Hence, from (3.39), for any δ > 0,

lim
∆→0

P ( sup
0≤t≤T

|S(t)− s̄(t)| > δ) = 0.

Now, recalling the definition of Ā4, we see that for ε > 0 we can find a δ > 0
sufficiently small for P (Ā4) < 0.5ε and then choose ∆ sufficiently small for
P (sup0≤t≤T |S(t)− s̄(t)| > δ) < 0.5ε. Substituting this into (3.38) yields P (Ac∪
A∆) < ε, for sufficiently small ∆, confirming (3.37). The proof is therefore
complete.

9.4 OPTIMAL STOPPING PROBLEMS

Suppose that a person has an asset or resource which changes according to
a time-homogeneous d-dimensional stochastic differential equation

dξ(t) = F (ξ(t))dt+G(ξ(t))dB(t) on t ≥ 0. (4.1)
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Here B(t) is an m-dimensional Brownian motion and, as a standing hypothesis,
we assume that

F : Rd → Rd and G : Rd → Rd×m are uniformly Lipschitz continuous.

Suppose that the person wishes to sell his asset and the price at time t is of course
a function of ξ(t), say φ(ξ(t)). Here φ is a continuous nonnegative function
defined on Rd and is called a reward function. Assume that he is given the
reward function φ and knows the behaviour of ξ(t) up to the present time t, but
because of the noise in the system he is not sure at the time of sale whether
his choice of time will turn out to be the best. The optimal stopping problem
is to look for a stopping strategy that gives the best result in the sense that
the strategy maximizes the expected profit in the long run. To formulate this
problem mathematically, let us recall the notation

Exφ(ξ(t)) =
∫

Rd

φ(y)P (x; dy, t)

which was introduced in Section 2.9, where P (x;A, t) is the transition probability
of the Markov solution ξ(t). As shown in Section 2.9, this is equivalent to

Exφ(ξ(t)) = Eφ(ξx(t)),

where ξx(t) is the unique solution of the equation

ξx(t) = x+
∫ t

0

F (ξx(s))ds+
∫ t

0

G(ξx(s))dB(s). (4.2)

In other words, if we denote by Px the probability law of ξx(t), then Ex is
the expectation with respect to Px. We also denote by T the family of all Ft-
stopping times (may take value ∞). Now the optimal stopping problem is to
look for a stopping time τ∗ = τ∗(x, ω) such that

Exφ(ξ(τ∗)) = sup
τ∈T

Exφ(ξ(τ)) for all x ∈ Rd, (4.3)

where φ(ξ(τ)) is set to be 0 at the points ω ∈ Ω where τ(ω) = ∞. Moreover, we
also wish to find the corresponding optimal expected reward

φ∗(x) := sup
τ∈T

Exφ(ξ(τ)). (4.4)

To solve this problem we need to introduce some basic concepts.

Definition 4.1 A Borel measurable function f : Rd → [0,∞] is said to be
supermeanvalued with respect to the Markov solution ξ(t) of equation (4.1) if

f(x) ≥ Exf(ξ(τ))

for all τ ∈ T and x ∈ Rd. The function f is said to be lower semicontinuous if

f(x) ≤ lim inf
y→x

f(y)

for all x ∈ Rd. If f is not only supermeanvalued but also lower semicontinuous,
then f is said to be l.s.c. superharmonic or simply superharmonic.

The following lemma lists a number of useful properties of supermeanvalued
and superharmonic functions.
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Lemma 4.2

a) If f, g are supermeanvalued (superharmonic) and α, β ≥ 0, then αf + βg is
supermeanvalued (resp. superharmonic).

b) If {fi}i∈I is a family of supermeanvalued functions, then f := infi∈I fi is
supermeanvalued.

c) If {fi}i≥1 is a sequence of supermeanvalued (superharmonic) functions and
fi ↑ f pointwise, then f is supermeanvalued (resp. superharmonic).

d) If f is supermeanvalued and τ1, τ2 ∈ T with τ1 ≤ τ2, then Exf(ξ(τ1)) ≥
Exf(ξ(τ2)).

e) If f is supermeanvalued and D is an open subset of Rd, then fD(x) :=
Exf(ξ(τD)) is supermeanvalued, where τD is the first exit time of ξ(t) from
D, i.e. τD = inf{t ≥ 0 : ξ(t) /∈ D}.

f) If f is superharmonic and {τi} is any sequence of stopping times such that
τi → 0 a.s., then

f(x) = lim
i→∞

Exf(ξ(τi)) for all x.

Proof. a) is straightforward.
b) Let τ ∈ T and x ∈ Rd be arbitrary. Note that for every i ∈ I,

fi(x) ≥ Exfi(ξ(τ)) ≥ Exf(ξ(τ)).

Hence
f(x) = inf

i∈I
fi(x) ≥ Exf(ξ(τ))

as required.
c) First suppose that {fi}i≥1 is a sequence of supermeanvalued functions

and fi ↑ f pointwise. Then

f(x) ≥ fi(x) ≥ Exfi(ξ(τ)) for all i.

So by the monotone convergence theorem,

f(x) ≥ lim
i→∞

Exfi(ξ(τ)) = Exf(ξ(τ))

which means that f is supermeanvalued. Next, if all fi’s are superharmonic,
then they are lower semicontinuous and

fi(x) ≤ lim inf
y→x

fi(y) ≤ lim inf
y→x

f(y).

In consequence
f(x) = lim

i→∞
fi(x) ≤ lim inf

y→x
f(y).
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This proves that f is lower semicontinuous and therefore is superharmonic.
d) In Chapter 2 we showed that the solution ξ(t) of equation (4.1) is a

homogeneous strong Markov process. Hence by the Markov property and the
supermeanvalued property of f , we have

E[f(ξx(t))|Fs] = Eξx(s)f(ξ(t− s)) ≤ f(ξx(s)), 0 ≤ s ≤ t <∞.

That is, f(ξx(t)) is a supermartingale. Therefore, by Doob’s stopping theorem
(see Section 1.3), we have

E[f(ξx(τ2))|Fs] ≤ f(ξx(τ1)).

Taking expectation on both sides yields

Ef(ξx(τ2)) ≤ Ef(ξx(τ1)),

that is Exf(ξ(τ2)) ≤ Exf(ξ(τ1)) as required.
e) Let ρ ∈ T be arbitrary and define τρ

D = inf{t ≥ ρ : ξ(t) /∈ D}. By the
strong Markov property we have that

Exf(ξ(τρ
D)) = Ex

[
Eξ(ρ)f(ξ(τD))

]
= ExfD(ξ(ρ)).

But τρ
D ≥ τD so by property d) we have

Exf(ξ(τρ
D)) ≤ Exf(ξ(τD)) = fD(x).

Therefore
fD(x) ≥ ExfD(ξ(ρ))

and fD is supermeanvalued.
f) By the lower semicontinuity and the well-known Fatou lemma we have

f(x) ≤ Ex

(
lim inf
i→∞

f(ξ(τi))
)
≤ lim inf

i→∞
Exf(ξ(τi)).

On the other hand, by the supermeanvalued property,

f(x) ≥ lim sup
i→∞

Exf(ξ(τi)).

So we must have the equality

f(x) = lim
i→∞

Exf(ξ(τi))

as desired. The proof is complete.
The following is a useful criterion (cf. Dynkin (1965)) for superharmonic

functions.
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Lemma 4.3 If f ∈ C2(Rd, R+), then f is superharmonic if and only if

Lf(x) ≤ 0 for all x ∈ Rd, (4.6)

where L is the diffusion operator associated with equation (4.1), that is

Lf(x) = fx(x)F (x) +
1
2
trace

[
GT (x)fxx(x)G(x)

]
.

Proof. Let (4.6) hold and τ ∈ T . For any t ≥ 0, Itô’s formula implies

Exf(ξ(τ ∧ t)) ≤ f(x).

Letting t→∞ we obtain by the Fatou lemma that

Exf(ξ(τ)) ≤ f(x).

So f is supermeanvalued and hence superharmonic. Conversely, assume that
(4.6) is false. So there is some x̄ ∈ Rd such that Lf(x̄) > 0. Due to the
continuity of Lf(·) we can find an open neighbourhood U of x̄ such that

θ := sup
x∈U

Lf(x) > 0.

Define the stopping time τU = inf{t ≥ 0 : ξx̄(t) /∈ U}. Clearly, 1 ∧ τU is also a
stopping time and 1 ∧ τU > 0 a.s. Now, by Itô’s formula,

Ex̄f(ξ(1 ∧ τU )) = Ef(ξx̄(1 ∧ τU ))

= f(x̄) + E

∫ 1∧τU

0

Lf(ξx̄(s))ds ≥ f(x̄) + θE(1 ∧ τU ) > f(x̄).

This means f is not supermeanvalued and of course not superharmonic. The
proof is complete.

However, it is too restrictive to require f be of C2. Fortunately, Dynkin
(1965) supplies us with another necessary and sufficient condition. To state, let
us give a new definition.

Definition 4.4 A lower semicontinuous function f : Rd → [0,∞] is said to be
excessive with respect to ξ(t) if

f(x) ≥ Exf(ξ(t)) for all t ≥ 0, x ∈ Rd.

Obviously a superharmonic function is excessive, but we now show that the
converse holds as well.

Lemma 4.5 A function f is superharmonic if and only if it is excessive.
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Proof. We only need to show the “if” part so we let f be excessive. First, we
assume that f is of C2. For any x ∈ Rd, by Itô’s formula we have∫ t

0

E[Lf(ξx(s))]ds = Ex(f(ξ(t))− f(x) ≤ 0 for all t ≥ 0.

Since E[Lf(ξx(s))] is continuous in s, we must have E[Lf(ξx(0))] = Lf(x) ≤ 0
for all x ∈ Rd. By Lemma 4.3, f is therefore superharmonic. The general case
can be proved by the standard approximation procedure (and the details can be
found in Dynkin (1965)).

Before we state our main results in this section, we still need to introduce
a few more new concepts.

Definition 4.6 Let g be a Borel measurable real-valued function on Rd. If f
is a supermeanvalued (superharmonic) function and f ≥ g, we call f a super-
meanvalued (resp. superharmonic) majorant of g. If ḡ is a supermeanvalued
majorant of g and ḡ ≤ f for any other supermeanvalued majorant f of g, then
ḡ is called the least supermeanvalued majorant of g. Similarly, if ĝ is a super-
harmonic majorant of g and ĝ ≤ f for any other superharmonic majorant f of
g, then ĝ is called the least superharmonic majorant of g.

Lemma 4.7 The least supermeanvalued majorant ḡ of g always exists and is
given by

ḡ(x) = inf
f
f(x) for x ∈ Rd,

where inf takes over all supermeanvalued majorants f of g.

Proof. By Lemma 4.2 b), the function inff f(x) is again supermeanvalued and
is therefore clearly the least supermeanvalued majorant of g.

The least superharmonic majorant ĝ of g does not always exist. However,
we can see clearly from Lemma 4.7 that if ĝ exists, then ĝ ≥ ḡ. Moreover, if
ḡ is lower semicontinuous, then ḡ is a superharmonic majorant of g and ḡ ≤ f
for any superharmonic majorant f of g and therefore, by definition, ĝ exists and
coincides with ḡ. The following theorem not only shows that ĝ exists as long as
g is nonnegative and lower semicontinuous but also gives the iterative procedure
to construct ĝ.

Theorem 4.8 Let g be a lower semicontinuous nonnegative function on Rd.
Then the least superharmonic majorant ĝ of g exists and coincides with the
supermeanvalued majorant ḡ of g, that is ĝ = ḡ. Moreover, let g0 = g and define
iteratively

gn(x) = sup
t∈Jn

Exgn−1(ξ(t)) (4.7)

for n = 1, 2, · · ·, where Jn = {k/2n : 0 ≤ k ≤ n2n}. Then gn ↑ ĝ.

Proof. We first claim that for any t ≥ 0, the function

h(x) := Exg0(ξ(t))
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is lower semicontinuous. If not, then there is some z ∈ Rd and a sequence {zk}
such that zk → z and

h(z) > lim
k→∞

h(zk). (4.8)

On the other hand, by the standing hypothesis of the uniform Lipschitz conti-
nuity, we can easily show that

E|ξz(t)− ξzk
(t)|2 ≤ C|z − zk|2,

where C is a positive number independent of z and zk. Hence, there is a subse-
quence {yk} of {zk} such that

ξyk
(t) → ξz(t) a.s.

Using the lower semicontinuity of g0 and applying the Fatou lemma we can then
derive that

h(z) = Eg0(ξz(t)) ≤ E
[
lim inf
k→∞

g0(ξyk
(t))
]

≤ lim inf
k→∞

[
Eg0(ξyk

(t))
]

= lim inf
k→∞

h(yk) = lim
k→∞

h(zk).

But this contradicts with (4.8) and hence h(x) must be lower semicontinuous.
Note that the supremum of any lower semicontinuous functions is lower semi-
continuous. We then easily see that g1 is lower semicontinuous and so are gn’s
by induction. Moreover, gn is clearly increasing so

ĝ(x) := lim
n→∞

gn(x) = sup
n≥1

gn(x)

is again lower semicontinuous. Noting

ĝ(x) ≥ gn(x) ≥ Exgn−1(ξ(t)) for all n and all t ∈ Jn,

we have
ĝ(x) ≥ lim

n→∞
Exgn−1(ξ(t)) = Exĝ(ξ(t)) (4.9)

for all t ∈ J =
⋃∞

n=1 Jn. Since J is dense in R+, for any t ≥ 0 we can choose a
sequence {tk} in J such that tk → t. Using (4.9), we then derive that

ĝ(x) ≥ lim inf
k→∞

Exĝ(ξ(tk)) ≥ Ex

(
lim inf
k→∞

ĝ(ξ(tk))
)
≥ Exĝ(ξ(t)).

This means that ĝ is excessive. By Lemma 4.5, ĝ is superharmonic and is
therefore a superharmonic majorant of g. On the other hand, if f is any super-
meanvalued majorant of g, we can easily show by induction that

f(x) ≥ gn(x) for all n,
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which implies that f(x) ≥ ĝ(x). This proves that ĝ is the least supermeanvalued
majorant ḡ of g. But ĝ is superharmonic so it must be the least superharmonic
majorant of g as well. The proof is complete.

It should be pointed out that Jn in (4.7) can be replaced by R+ and the
proof will even become slightly easier. But, (4.7) with Jn is much easier to be
used in practice.

After so many preparations we can now return to the optimal stopping
problem (4.3)–(4.4). Let us first have a quick look at how the least superhar-
monic majorant connects with the problem. Let φ be the reward function so it is
nonnegative and continuous. By Theorem 4.8, its least superharmonic majorant
φ̂ exists. If τ ∈ T , then

φ̂(x) ≥ Exφ̂(ξ(τ)) ≥ Exφ(ξ(τ)),

which implies
φ̂(x) ≥ sup

τ∈T
Exφ(ξ(τ)) = φ∗(x). (4.10)

What is not so obvious is that the converse inequality holds as well. In other
words, we always have φ̂ = φ∗ and we shall now begin to prove this main result
which is due to Dynkin (1963).

Theorem 4.9 Let φ be a reward function (so continuous and nonnegative) and
φ∗ be the optimal reward defined by (4.4). Let φ̂ be the least superharmonic
majorant of φ. Then

φ∗ = φ̂. (4.11)

Proof. First we assume that φ is bounded. For any ε > 0, set

Dε = {x ∈ Rd : φ(x) < φ̂(x)− ε}. (4.12)

Since φ is continuous while φ̂ is lower semicontinuous, Dε is open. Let τε be the
first exit time of ξ(t) from Dε, i.e.

τε = inf{t ≥ 0 : ξ(t) /∈ Dε}.

Clearly, τε is a stopping time. Define

φε(x) = Exφ̂(ξ(τε)) for x ∈ Rd. (4.13)

By Lemma 4.2 e), φε is supermeanvalued. We now claim that

φ(x) ≤ φε(x) + ε for all x ∈ Rd. (4.14)

If this is false, we must have

β := sup
x∈Rd

[φ(x)− φε(x)] > ε.
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So we can find some x0 such that

φ(x0)− φε(x0) ≥ β − ε

2
> 0. (4.15)

Note that either x0 ∈ Dε or x0 /∈ Dε. If the latter is true, τε = 0 Px0-a.s.
Then φε(x0) = φ̂(x0) ≥ φ(x0) which contradicts (4.15). Therefore, we must
have x0 ∈ Dε and, by the continuity of the solution, τε > 0 Px0-a.s. Noting that
φε + β is a supermeanvalued majorant of φ, we have that

φ̂(x0) ≤ φε(x0) + β.

This, together with (4.15), yields

φ̂(x0) ≤ φ(x0) +
ε

2
. (4.16)

On the other hand, for any t > 0, by the superharmonic property of φ̂ and the
definition of τε we have that

φ̂(x0) ≥ Ex0 φ̂(ξ(t ∧ τε)) ≥ Ex0

(
[φ(ξ(t)) + ε]I{t<τε}

)
.

Applying the Fatou lemma we obtain that

φ̂(x0) ≥ lim inf
t→0

Ex0

(
[φ(ξ(t)) + ε]I{t<τε}

)
≥ Ex0

(
lim inf

t→0
[φ(ξ(t)) + ε]I{t<τε}

)
= φ(x0) + ε.

But this contradicts with (4.16) so (4.14) must hold. In consequence, φε + ε is a
supermeanvalued majorant of φ. This, together with the definition of τε, implies
that

φ̂(x) ≤ φε(x) + ε = Exφ̂(ξ(τε)) + ε

≤ Ex[φ(ξ(τε)) + ε] + ε ≤ φ∗(x) + 2ε. (4.17)

Since ε is arbitrary, we have φ̂ ≤ φ∗. By (4.10), we must have φ∗ = φ̂. In other
words, we have proved that (4.11) holds if φ is bounded. If φ is unbounded, let
φn = n ∧ φ for n = 1, 2, · · ·. Then

φ∗ ≥ φ∗n = φ̂n ↑ f as n→∞.

Clearly, f ≥ φ and by Lemma 4.2 c), f is superharmonic. So f is a superhar-
monic majorant of φ. Thus φ∗ ≥ f ≥ φ̂ which, together with (4.10), implies
φ∗ = φ̂ again. The proof is complete.

From the proof above, we obtain the following useful approximation result.
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Corollary 4.10 If the reward function φ is bounded, then τε defined in the
proof of Theorem 4.9 is close to the optimal stopping time in the sense that

0 < φ∗(x)− Exφ(ξ(τε)) ≤ 2ε (4.18)

for all x ∈ Rd.

This corollary follows from (4.17) and (4.11) directly. We now establish
two useful criteria on the optimal stopping time.

Corollary 4.11 Let φ, φ̂ and φ∗ be the same as defined in Theorem 4.9. Suppose
there is a stopping time τ0 ∈ T such that

φ0(x) := Exφ(ξ(τ0))

is a supermeanvalued majorant of φ. Then

φ∗(x) = φ0(x)

and hence τ∗ = τ0 is an optimal stopping time for problem (4.3).

Proof. Since φ0 is a supermeanvalued majorant of φ, we have

φ̄(x) ≤ φ0(x).

On the other hand, we always have that

φ0(x) ≤ sup
τ∈T

Exφ(ξ(τ)) = φ∗(x).

By Theorems 4.8 and 4.9, we have φ∗(x) = φ0(x) and hence τ∗ = τ0 is an
optimal stopping time.

Corollary 4.12 Let φ, φ̂ and φ∗ be the same as defined in Theorem 4.9. Let

D = {x ∈ Rd : φ(x) < φ̂(x)} and τD = inf{t ≥ 0 : ξ(t) /∈ D}.

Define
φD(x) = Exφ(ξ(τD)).

If φD ≥ φ, then φ∗ = φD and τD is an optimal stopping time.

Proof. Noting ξ(τD) /∈ D, we have φ(ξ(τD)) ≥ φ̂(ξ(τD)) and hence we must
have φ(ξ(τD)) = φ̂(ξ(τD)). By Lemma 4.2 e), φD(x) = Exφ̂(ξ(τD)) is superme-
anvalued. The assertions now follow from Corollary 4.11.

An optimal stopping time τ∗ for problem (4.3) may not always exist. The
following theorem not only gives a sufficient condition for the existence of an
optimal stopping time but also characterizes it.
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Theorem 4.13 Let φ, φ̂ and φ∗ be the same as defined in Theorem 4.9. Let

D = {x ∈ Rd : φ(x) < φ̂(x)} and τD = inf{t ≥ 0 : ξ(t) /∈ D}.

For every n = 1, 2, · · ·, let φn = n ∧ φ and define

Dn = {x ∈ Rd : φn(x) < φ̂n(x)} and τn = inf{t ≥ 0 : ξ(t) /∈ Dn}.

If Px{τn <∞} = 1 for all x ∈ Rd and n ≥ 1, then

φ∗(x) = lim
n→∞

Exφ(ξ(τn)). (4.19)

In particular, if for each x ∈ Rd, Px{τD <∞} = 1 and the family {φ(ξ(τn))}n≥1

is uniformly integrable with respect to Px, that is

lim
K→∞

(
sup
n≥1

Ex

[
φ(ξ(τn))I{φ(ξ(τn))≥K}

])
= 0,

then
φ∗(x) = Exφ(ξ(τD)). (4.20)

In other words, τ∗ = τD is an optimal stopping time for problem (4.3).

Proof. We first claim that if φ is bounded and Px{τD <∞} = 1 for all x ∈ Rd,
then

φ∗(x) = Exφ(ξ(τD)). (4.21)

To show this, let τε be the same as defined in the proof of Theorem 4.9. Clearly,
τε ↑ τD a.s when ε ↓ 0. By the bounded convergence theorem, we have

Exφ(ξ(τε)) → Exφ(ξ(τD)) as ε→ 0.

This, together with Corollary 4.10, yields (4.21).
We now begin to prove (4.19). By what we have just shown, we have

φ∗n(x) = Exφn(ξ(τn)) for all n ≥ 1. (4.22)

Since φ̂n is increasing, we can define

f = lim
n→∞

φ̂n.

By Lemma 4.2 c), f is superharmonic. Since φn ≤ φ̂n ≤ f for all n, we have
φ ≤ f . Hence f is a superharmonic majorant of φ and so f ≥ φ̂. On the other
hand, noting that φ̂n ≤ φ̂ for all n, we see that f ≤ φ̂. Therefore, we must have

φ̂ = lim
n→∞

φ̂n. (4.23)
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Using Theorem 4.9 and equalities (4.22)–(4.23) we then derive that

φ∗(x) = lim
n→∞

φ∗n(x) = lim
n→∞

Exφn(ξ(τn))

≤ lim inf
n→∞

Exφ(ξ(τn)) ≤ lim sup
n→∞

Exφ(ξ(τn)) ≤ φ∗(x)

and the required assertion (4.19) follows.

We now show (4.20). Clearly, φ̂n ≤ n. So if x ∈ Dn, then φn(x) < n. In
consequence, φ(x) < n, φ(x) = φn(x) < φ̂n(x) ≤ φ(x) and φn+1(x) = φn(x) <
φ̂n(x) ≤ φ̂n+1(x). In other words, we have shown that

Dn ⊂ Dn+1 and Dn ⊂ D ∩ {x : φ(x) < n}.

Recalling (4.23), we then see that D is the increasing union of Dn’s and

τD = lim
n→∞

τn.

Thus, ξ(τn) → ξ(τD) Px-a.s. and, by the the uniform integrability, this conver-
gence is in L1 as well. Therefore, we obtain from (4.19) that

φ∗(x) = lim
n→∞

Exφ(ξ(τn)) = Exφ(ξ(τD))

which is the required (4.20). The proof is complete.
Theorem 4.13 shows that under certain conditions τD is an optimal stopping

time. The following theorem shows the “uniqueness” in the sense that if an
optimal stopping time τ∗ exists, then τD must be an optimal stopping time (but
may not be the same as τ∗).

Theorem 4.14 Let τD be the same as defined in Theorem 4.14. If there exists
an optimal stopping time τ∗ for problem (4.3), then

Px{τ∗ ≥ τD} = 1 for all x ∈ Rd (4.24)

and τD is also an optimal stopping time.

Proof. If (4.24) is not true, there is some x0 ∈ Rd such that Px0{τ∗ < τD} > 0.
For ω ∈ {τ∗ < τD}, by the definition of τD and Theorem 4.9, we have that
φ(ξ(τ∗)) < φ̂(ξ(τ∗)) = φ∗(ξ(τ∗)). Moreover, we always have φ ≤ φ∗. Thus we
have a contradiction:

φ∗(x0) = Ex0φ(ξ(τ∗)) = Ex0

[
φ(ξ(τ∗))I{τ∗<τD}

]
+ Ex0

[
φ(ξ(τ∗))I{τ∗≥τD}

]
< Ex0

[
φ∗(ξ(τ∗))I{τ∗<τD}

]
+ Ex0

[
φ∗(ξ(τ∗))I{τ∗≥τD}

]
= Ex0φ

∗(ξ(τ∗)) ≤ φ∗(x0),
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where the last inequality holds because φ∗ is superharmonic. So (4.24) must
hold. Now by Lemma 4.2 d) etc, we derive that

φ∗(x) = Exφ(ξ(τ∗)) ≤ Exφ̂(ξ(τ∗))

≤ Exφ̂(ξ(τD)) ≤ Exφ(ξ(τD)) ≤ φ∗(x).

This proves that τD is an optimal stopping time.
The following two important remarks explain how the theory discussed

above can be used to cope with more general problems.

Remark 4.15 In many situations the reward function φ not only depends on
the space but also the time. That is, φ = φ(x, t) is a continuous nonnegative
function on Rd×R+. The optimal stopping problem becomes to find the optimal
expected value

φ0(x) = sup
τ∈T

Exφ(ξ(τ), τ) (4.25)

and the corresponding optimal stopping time τ∗, if there is any, such that

φ0(x) = Exφ(ξ(τ∗), τ∗). (4.26)

Clearly, this looks more general than problem (4.3)–(4.4). However, we can
use the theory established above to solve this problem. Extend φ to the whole
d+ 1-dimensional Euclidean space Rd ×R by defining

φ(x, t) = φ(x, 0) for x ∈ Rd, t < 0.

Then φ(x, t) is continuous on Rd×R. Introduce the d+1-dimensional stochastic
differential equation

dη(t) = d

[
ξ(t)
η̃(t)

]
=
[
F (ξ(t))

1

]
dt+

[
G(ξ(t))

0

]
dB(t).

The solution with initial value (x, s) ∈ Rd × R is denoted by ηx,s(t) and define
Ex,sφ(η(t)) = Eφ(ηx,s(t)). Using the theory established above we can find the
optimal mean reward

φ∗(x, s) = sup
τ∈T

Ex,sφ(η(τ))

and, if there is one, an optimal stopping time τ∗ such that

φ∗(x, s) = Ex,sφ(η(τ∗)).

In particular,

φ0(x) = φ∗(x, 0) = Ex,0φ(η(τ∗)) = Exφ(ξ(τ∗), τ∗)

which solves problem (4.25)–(4.26).
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Remark 4.16 Sometimes the reward at the sale time t will not only depend on
the present state x(t) but also the whole history {x(s) : 0 ≤ s ≤ t}. For example,
let φ1 and φ2 be two continuous nonnegative functions on Rd and consider the
following optimal stopping problem: Determine the optimal mean reward

φ0(x) := sup
τ∈T

Ex

[∫ τ

0

φ1(ξ(t))dt+ φ2(ξ(τ))
]
, (4.27)

and find, if there is one, an optimal stopping time τ∗ such that

φ0(x) = Ex

[∫ τ∗

0

φ1(ξ(t))dt+ φ2(ξ(τ∗))
]
. (4.28)

This again looks more general than problem (4.3)–(4.4) but we can still use the
theory established above to solve it. Define

φ(x, y) = φ2(x) + 0 ∧ y for (x, y) ∈ Rd ×R.

So φ(x, y) is continuous and nonnegative. Introduce the d + 1-dimensional
stochastic differential equation

dη(t) = d

[
ξ(t)
η̃(t)

]
=
[
F (ξ(t))
φ1(ξ(t))

]
dt+

[
G(ξ(t))

0

]
dB(t).

The solution with initial value (x, y) ∈ Rd×R is denoted by ηx,y(t) and we define
Ex,yφ(η(t)) = Eφ(ηx,y(t)). Moreover, at the points ω ∈ Ω where τ(ω) = ∞,
Ex,yφ(η(τ)) is interpreted as

Ex,y

[
0 ∧ η̃(∞)

]
= Ex

(
0
∨[

y +
∫ ∞

0

φ1(ξ(t))dt
])

instead of it being set to 0, and this will not affect the theory discussed before.
We can therefore find the optimal mean value

φ∗(x, y) = sup
τ∈T

Ex,yφ(η(τ))

and an optimal stopping time τ∗, if there is one, such that

φ∗(x, y) = Ex,yφ(η(τ∗)).

In particular,

φ0(x) = φ∗(x, 0) = Ex,0φ(η(τ∗)) = Ex

[∫ τ∗

0

φ1(ξ(t))dt+ φ2(ξ(τ∗))
]

which solves problem (4.27)–(4.28).
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9.5 STOCHASTIC GAMES

Consider a d-dimensional stochastic differential equation

dξ(t) = F (ξ(t))dt+G(ξ(t))dB(t) on t ≥ 0. (5.1)

Here B(t) is an m-dimensional Brownian motion and we assume that

(H1) F : Rd → Rd and G : Rd → Rd×m are uniformly Lipschitz continuous.

Given the initial value ξ(0) = x, the solution of equation (5.1) is denoted by
ξx(t) and the corresponding Ex and Px are defined as before.

For any nonempty closed subset U of Rd, denote by hU the first hitting
time of the set U by ξ(t), i.e.

hU = inf{t ≥ 0 : ξ(t) ∈ U}.

For any set H ⊂ Rd, denote by Hc the complement of H in Rd. Let D be a
given nonempty open set in Rd. (In particular, one may take D = Rd.) Denote
by ∂D the boundary of D and let D̄ = D ∪ ∂D. Let A,B be two given subsets
of D̄ such that ∂D ⊂ A ∩ B. For each x ∈ D̄, denote by Ax the family of all
finite stopping times σ such that σ ≤ hDc and ξx(σ) ∈ A. Similarly, denote by
Bx the family of all finite stopping times τ such that τ ≤ hDc and ξx(τ) ∈ B.
Note that σ ≡ 0 is in Ax if and only if x ∈ A. If D = Rd, then σ ∈ Ax if and
only if Px{σ < ∞, ξ(σ) ∈ A} = 1. If A = B, then Ax = Bx. Let f, ϕ, φ1 and
φ2 be continuous functions defined on D̄ with ϕ being nonnegative. For x ∈ D̄,
σ ∈ Ax and τ ∈ Bx, define

Jx(σ, τ) = Ex

∫ σ∧τ

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ σ

0

ϕ(ξ(s))ds
]
φ1(ξ(σ))I{σ<τ}

)
+ Ex

(
exp
[
−
∫ τ

0

ϕ(ξ(s))ds
]
φ2(ξ(τ))I{σ≥τ}

)
. (5.2)

This will be called the payoff functional .
We consider a scheme whereby, for a given x ∈ D̄, player (a) chooses any

stopping time σ ∈ Ax and player (b) chooses any stopping time τ ∈ Bx, and
the resulting payoff is Jx(σ, τ) that player (a) pays to player (b) (Of course, if
Jx(σ, τ) is negative, this should be interpreted as player (b) pays to player (a)).
Thus, the aim of player (a) is to minimize Jx(σ, τ) while the aim of player (b) is
to maximize Jx(σ, τ). We shall call this scheme the stochastic game associated
with (5.1)–(5.2) and denote it by Gx. We shall denote the collection {Gx : x ∈ D̄}
by G, and call it the stochastic game associated with (5.1)–(5.2) in D̄. If

inf
σ∈Ax

sup
τ∈Bx

Jx(σ, τ) = sup
τ∈Bx

inf
σ∈Ax

Jx(σ, τ), (5.3)
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then we say that the stochastic game Gx has value, and the common number
in (5.3) is called the value of game Gx and is denoted by V (x). If there exist
stopping times σ∗x and τ∗x in Ax and Bx, respectively, such that

Jx(σ∗x, τ) ≤ Jx(σ∗x, τ
∗
x ) ≤ Jx(σ, τ∗x ) (5.4)

for all σ ∈ Ax and τ ∈ Bx, we call (σ∗x, τ
∗
x ) a saddle point of Gx. If (5.4) holds,

we have

inf
σ∈Ax

sup
τ∈Bx

Jx(σ, τ) ≤ sup
τ∈Bx

Jx(σ∗x, τ)

≤ Jx(σ∗x, τ
∗
x ) ≤ inf

σ∈Ax

Jx(σ, τ∗x ) ≤ sup
τ∈Bx

inf
σ∈Ax

Jx(σ, τ).

On the other hand, we always have

inf
σ∈Ax

sup
τ∈Bx

Jx(σ, τ) ≥ sup
τ∈Bx

inf
σ∈Ax

Jx(σ, τ).

We therefore see that if (σ∗x, τ
∗
x ) is a saddle point of Gx, then the game has its

value
V (x) = Jx(σ∗x, τ

∗
x ). (5.5)

If there exist closed sets A∗ ⊂ A and B∗ ⊂ B such that for every x ∈ D̄, the
pair of

σ∗x = hA∗ and τ∗x = hB∗

forms a saddle point of Gx, then we say that the pair (hA∗ , hB∗) is a saddle point
for G and we call the pair (A∗, B∗) a saddle point of sets for G.

To characterise the saddle points, we shall need the following conditions:

(H2) For any x ∈ D̄, Ax and Bx are nonempty.
(H3) The functions f, ϕ, φ1 and φ2 are bounded and continuous with ϕ ≥ 0

and, moreover,

Ex

∫ σ∧τ

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt <∞ (5.6)

for all x ∈ D̄, σ ∈ Ax and τ ∈ Bx.

Conditions (H2) and (H3) are irrestrictive. For example, if Px{hDc < ∞} = 1
for every x ∈ D̄, then Ax and Bx contain at least one element, namely hDc ,
since ∂D ⊂ A ∩ B. If ExhDc < ∞, then (5.6) is satisfied. Let us now establish
two simple but useful lemmas that give the criteria for ExhDc < ∞. Let L be
the diffusion operator associated with equation (5.1), that is

Lu(x) = ux(x)F (x) +
1
2
trace

[
GT (x)uxx(x)G(x)

]
for a C2-function u.
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Lemma 5.1 Suppose that there exists a function u ∈ C(D̄;R) ∩ C2(D;R) and
a positive constant K such that

Lu(x) ≤ −1 and |u(x)| ≤ K for x ∈ D.

Then
ExhDc ≤ 2K for all x ∈ D.

Proof. For any t ≥ 0, by Itô’s formula and the condition we derive that

−K ≤ Exu(ξ(t ∧ hDc)) ≤ u(x) + Ex

∫ t∧hDc

0

Lu(ξ(s))ds ≤ K − Ex(t ∧ hDc).

That is
Ex(t ∧ hDc) ≤ 2K.

Letting t→∞ we obtain the asserted conclusion.

Lemma 5.2 Let Φ = (Φij)d×d = GGT and write F = (F1, · · · , Fd)T . Let D be
a domain contained in a strip |x1| ≤ γ for some positive constant γ. Suppose
that there exists a constant λ such that

λF1(x) +
λ2

2
Φ11(x) ≥ 1 for all x ∈ D̄.

Then
ExhDc ≤ 2e2|λ|γ for all x ∈ D.

Proof. Let µ = e|λ|γ and define

u(x) = −µeλx1 for x ∈ D̄.

Then |u(x)| ≤ e2|λ|γ and, moreover,

Lu(x) = −µeλx1

(
λF1(x) +

λ2

2
Φ11(x)

)
≤ −µeλx1 ≤ −µe−|λ|γ = −1.

So the required conclusion follows from Lemma 5.1.
The following theorem describes the properties of the value function V (x)

corresponding to a saddle point of sets.

Theorem 5.3 Let (H1)–(H3) hold and assume that (A∗, B∗) is a saddle point
of sets for the stochastic game G. Then the value function V (x) has the following
properties:

V (x) ≤ φ1(x) if x ∈ A−B∗, (5.7)
V (x) ≥ φ2(x) if x ∈ B, (5.8)
V (x) = φ1(x) if x ∈ A∗ −B∗, (5.9)
V (x) = φ2(x) if x ∈ B∗, (5.10)
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also

V (x) ≤ Ex

∫ α

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ α

0

ϕ(ξ(s))ds
]
V (ξ(α))

)
(5.11)

if α is a stopping time such that α ≤ hB∗ and, moreover,

V (x) ≥ Ex

∫ β

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ β

0

ϕ(ξ(s))ds
]
V (ξ(β))

)
(5.12)

if β is a stopping time such that β ≤ hA∗ .

Proof. By definition, we have that

Jx(hA∗ , τ) ≤ V (x) ≤ Jx(σ, hB∗) for all σ ∈ Ax, τ ∈ Bx. (5.13)

If x ∈ A−B∗, the σ ≡ 0 belongs to Ax and hB∗ > 0 Px-a.s. Hence

Jx(0, hB∗) = φ1(x).

This, together with the second inequality in (5.13), yields (5.7). If x ∈ B, then
τ ≡ 0 belongs to Bx and

Jx(hA∗ , 0) = φ2(x).

This, together with the first inequality in (5.13), yields (5.8). To prove (5.9),
note that if x ∈ A∗ −B∗, then hA∗ = 0 < hB∗ Px-a.s. Thus

V (x) = Jx(hA∗ , hB∗) = φ1(x).

Next, if x ∈ B∗, then hB∗ = 0 ≤ hA∗ Px-a.s. and so

V (x) = Jx(hA∗ , hB∗) = φ2(x)

which is (5.10). We proceed to prove (5.11). Let α be any stopping time such
that α ≤ hB∗ . Note that

V (x) = inf
σ∈Ax

Jx(σ, hB∗) ≤ inf
σ∈Ax,σ≥α

Jx(σ, hB∗)

= inf
σ∈Ax,σ≥α

Ex

{
Ex

(∫ σ∧hB∗

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ exp
[
−
∫ σ

0

ϕ(ξ(s))ds
]
φ1(ξ(σ))I{σ<hB∗}
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+ exp
[
−
∫ hB∗

0

ϕ(ξ(s))ds
]
φ2(ξ(hB∗))I{σ≥hB∗}

∣∣∣∣Fα

)}
.

= Ex

∫ α

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ inf
σ∈Ax,σ≥α

Ex

{
exp
[
−
∫ α

0

ϕ(ξ(s))ds
]

× Ex

(∫ σ∧hB∗

α

exp
[
−
∫ t

α

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ exp
[
−
∫ σ

α

ϕ(ξ(s))ds
]
φ1(ξ(σ))I{σ<hB∗}

+ exp
[
−
∫ hB∗

α

ϕ(ξ(s))ds
]
φ2(ξ(hB∗))I{σ≥hB∗}

∣∣∣∣Fα

)}
.

By the strong Markov property, the right-hand side is equal to

Ex

∫ α

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

{
exp
[
−
∫ α

0

ϕ(ξ(s))ds
]

inf
σ∈Aξ(α)

Jξ(α)(σ, hB∗)
}

= Ex

∫ α

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

{
exp
[
−
∫ α

0

ϕ(ξ(s))ds
]
V (ξ(α))

}
.

This proves (5.11). The proof of (5.12) is similar and therefore the proof of this
theorem is complete.

Note that it follows from inequalities (5.7) and (5.8) that

φ1(x) ≥ φ2(x) if x ∈ A ∩B −B∗. (5.14)

Thus, for the existence of a saddle point of sets (A∗, B∗), it is necessary that
(5.14) holds. We shall now show the converse of Theorem 5.3.

Theorem 5.4 Let (H1)–(H3) hold. Assume that there exists a Borel measurable
function V (x) defined on D̄ and closed sets A∗ ⊂ A, B∗ ⊂ B such that (5.7)–
(5.12) are satisfied,

hA∗ ∈ Ax, hB∗ ∈ Bx for x ∈ D (5.15)

and, moreover,
φ1(x) = φ2(x) on x ∈ A∗ ∩B∗. (5.16)

Then (A∗, B∗) is a saddle point of sets for the stochastic game G and V (x) is
the value of the game.
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Before the proof, let us point out that if hDc <∞ Px-a.s. for every x ∈ D
and ∂D ∈ A∗∩B∗, then condition (5.15) is satisfied. Moreover, condition (5.16)
means that the game is “fair.” Indeed, from the definition of Jx(σ, τ) we see
that player (b) has a “slight” advantage for he controls φ2 on the set {σ = τ},
but condition (5.16) abolishes this advantage on the set A∗ ∩ B∗ while in the
complement of A∗ ∩B∗ this advantage is irrelevant.

Proof. What we have to show is that

Jx(hA∗ , τ) ≤ V (x) ≤ Jx(σ, hB∗) (5.17)

for σ ∈ Ax and τ ∈ Bx. Note that we always have ξ(hA∗) ∈ A∗. If ξ(hA∗) /∈ B∗,
then by (5.9), V (ξ(hA∗)) = φ1(ξ(hA∗)) while if ξ(hA∗) ∈ B∗, then by (5.10) and
(5.16), V (ξ(hA∗)) = φ1(ξ(hA∗)) = φ2(ξ(hA∗)). Therefore, we have

V (ξ(hA∗)) = φ1(ξ(hA∗)). (5.18)

Moreover, for any τ ∈ Bx, ξ(τ) ∈ B and hence, by (5.8),

V (ξ(τ)) ≥ φ2(ξ(τ)). (5.19)

Making use of (5.18)–(5.19), we then derive that

Jx(hA∗ , τ) = Ex

∫ hA∗∧τ

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ hA∗

0

ϕ(ξ(s))ds
]
φ1(ξ(hA∗))I{hA∗<τ}

)
+ Ex

(
exp
[
−
∫ τ

0

ϕ(ξ(s))ds
]
φ2(ξ(τ))I{hA∗≥τ}

)
≤ Ex

∫ hA∗∧τ

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ hA∗∧τ

0

ϕ(ξ(s))ds
]
V (ξ(hA∗ ∧ τ))

)
.

Using (5.12) with β = hA∗ ∧ τ , we then obtain that

Jx(hA∗ , τ) ≤ V (x)

which is the first inequality in (5.17). The second inequality in (5.17) can be
proved similarly.

The following theorem shows that the problem of finding a saddle point for
the stochastic game G can be reduced to a problem of solving elliptic variational
inequalities.

Theorem 5.5 Let V ∈ C(D̄;R) ∩ C2(D;R) and set

A∗ = {x ∈ A : V (x) = φ1(x)} and B∗ = {x ∈ A : V (x) = φ2(x)}.
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Assume that

LV (x)− ϕ(x)V (x) + f(x) ≤ 0 if x ∈ D −A∗, (5.20)
LV (x)− ϕ(x)V (x) + f(x) ≥ 0 if x ∈ D −B∗, (5.21)

V (x) ≤ φ1(x) if x ∈ A−B∗, (5.22)
V (x) ≥ φ2(x) if x ∈ B, (5.23)

V (x) = φ1(x) = φ2(x) if x ∈ ∂D. (5.24)

Assume also that hDc < ∞ Px-a.s. for all x ∈ D. Then (A∗, B∗) is a saddle
point of sets for the stochastic game G and V (x) is the value of the game.

Proof. Clearly, A∗ and B∗ are closed subsets of A and B, respectively. By
(5.24), ∂D ⊂ A∗∩B∗ and so hA∗∨hB∗ ≤ hDc . This, together with the condition
that hDc <∞ Px-a.s., implies that

hA∗ ∈ Ax, hB∗ ∈ Bx for x ∈ D.
For any τ ∈ Bx, we can easily apply the Itô formula to show that

Ex

(
exp
[
−
∫ hA∗∧τ

0

ϕ(ξ(s))ds
]
V (ξ(hA∗ ∧ τ))

)
− V (x)

= Ex

∫ hA∗∧τ

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
](
LV (ξ(t))− ϕ(ξ(t))V (ξ(t))

)
dt.

Using conditions (5.20) and (5.23), we then see that

V (x) ≥ Ex

∫ hA∗∧τ

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ hA∗

0

ϕ(ξ(s))ds
]
φ1(ξ(hA∗))I{hA∗<τ}

)
+ Ex

(
exp
[
−
∫ τ

0

ϕ(ξ(s))ds
]
φ2(ξ(τ))I{hA∗≥τ}

)
= Jx(hA∗ , τ). (5.25)

On the other hand, for any σ ∈ Ax, we have that

V (x) = −Ex

∫ σ∧hB∗

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
](
LV (ξ(t))− ϕ(ξ(t))V (ξ(t))

)
dt

+ Ex

(
exp
[
−
∫ σ∧hB∗

0

ϕ(ξ(s))ds
]
V (ξ(σ ∧ hB∗)

)
≤ Ex

∫ σ∧hB∗

0

exp
[
−
∫ t

0

ϕ(ξ(s))ds
]
f(ξ(t))dt

+ Ex

(
exp
[
−
∫ σ

0

ϕ(ξ(s))ds
]
φ1(ξ(σ))I{σ<hB∗}

)
+ Ex

(
exp
[
−
∫ hB∗

0

ϕ(ξ(s))ds
]
φ2(ξ(hB∗))I{σ≥hB∗}

)
= Jx(σ, hB∗). (5.26)



350 Applications to Economics and Finance [Ch.9

In other words, we have proved that

Jx(hA∗ , τ) ≤ V (x) ≤ Jx(σ, hB∗)

for all σ ∈ Ax and τ ∈ Bx and therefore the desired conclusions follow. The
proof is complete.

Due to the page limit we will not discuss the solution to the elliptic vari-
ational inequalities (5.20)–(5.24). The reader can find the details in Friedman
(1975) or Wu & Mao (1988).



10

Stochastic Neural Networks

10.1 INTRODUCTION

Since Hopfield (1982) initiated the study of neural networks, theoretical under-
standing of neural network dynamics has advanced greatly and we here mention
Hopfield (1984), Hopfield & Tank (1986) and Denker (1986) among others. Much
of the current interest in artificial networks stems not only from their richness as
a theoretical model of collective dynamics but also from the promise they have
shown as a practical tool for performing parallel computation. In performing
the computation, there are various stochastic perturbations to the networks and
it is important to understand how these perturbations affect the networks. Es-
pecially, it is very critical to know whether the networks are stable or not under
the perturbations. Although the stability of neural networks has been studied
to a great deal, the stochastic effects to the stability problem have not been
investigated until Liao & Mao (1996a, b) and the main aim of this chapter is to
introduce the study in this new direction.

10.2 STOCHASTIC NEURAL NETWORKS

The neural network proposed by Hopfield (1982) can be described by an
ordinary differential equation of the form

Ciu̇i(t) = − 1
Ri

ui(t) +
d∑

j=1

Tijgj(uj(t)), 1 ≤ i ≤ d, (2.1)

on t ≥ 0. The variable ui(t) represents the voltage on the input of the ith
neuron. Each neuron is characterized by an input capacitance Ci and a transfer

351
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function gi(u). The connection matrix element Tij has a value either + 1/Rij

or − 1/Rij depending on whether the noninverting or inverting output of the
jth neuron is connected to the input of the ith neuron through a resistance Rij .
The parallel resistance at the input of the ith neuron is

Ri =
1∑d

j=1 |Tij |
.

The nonlinear transfer function gi(u) is sigmoidal, saturating at ±1 with maxi-
mum slope at u = 0. In terms of mathematics, gi(u) is a nondecreasing Lipschitz
continuous function with properties that

ugi(u) ≥ 0 and |gi(u)| ≤ 1 ∧ βi|u| on −∞ < u < ∞, (2.2)

where βi is the slope of gi(u) at u = 0 and is supposed to be positive and finite.
By defining

bi =
1

CiRi
and aij =

Tij

Ci

equation (2.1) can be re-written as

u̇i(t) = −biui(t) +
d∑

j=1

aijgj(uj(t)), 1 ≤ i ≤ n, (2.3)

or equivalently
u̇(t) = −B̄u(t) + Ag(u(t)), (2.4)

where

u(t) = (u1(t), · · · , ud(t))T , B̄ = diag.(b1, · · · , bd),
A = (aij)d×d, g(u) = (g1(u1), · · · , gd(ud))T .

It is useful to note that

bi =
d∑

j=1

|aij |, 1 ≤ i ≤ d. (2.5)

Suppose there exists a stochastic perturbation to the neural network and the
stochastically-perturbed network is described by a stochastic differential equa-
tion

dx(t) = [−B̄x(t) + Ag(x(t))]dt + σ(x(t))dB(t) on t ≥ 0. (2.6)

Here B(t) is an m-dimensional Brownian motion defined on the given complete
probability space (Ω,F , {Ft}, P ) and σ(x) = (σij(x))d×m is a d × m-matrix
valued function defined on Rd. We always assume that σ(x) is locally Lipschitz
continuous and satisfies the linear growth condition as well. By the theory of
Chapter 2, we know that given any initial value x(0) = x0 ∈ Rd, equation
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(2.6) has a unique global solution on t ≥ 0 and we shall denote the solution by
x(t;x0). Moreover, we also assume that σ(0) = 0 for the stability purpose of
this chapter. So equation (2.6) admits a trivial solution x(t; 0) ≡ 0. Moreover,
by Lemma 4.3.2, we know that if the initial value x0 6= 0, the solution will never
be zero with probability one, that is x(t;x0) 6= 0 for all t ≥ 0 a.s.

Now that equation (2.6) is a stochastically perturbed system of equation
(2.4), it is interesting to know how the stochastic perturbation affects the stabil-
ity property of equation (2.4). More precisely speaking, when equation (2.4) is
stable, it is useful to know whether the perturbed equation (2.6) remains stable
or becomes unstable; but when equation (2.4) is unstable, it is then useful to
know whether the perturbed equation (2.6) becomes stable or remains unstable.
In the sequel of this section we shall discuss these problems in detail.

(i) Exponential Stability

Let us first state a useful lemma.

Lemma 2.1 Assume that there exists a symmetric positive definite matrix
Q = (qij)d×d and two numbers µ ∈ R and ρ ≥ 0 such that

2xT Q[−B̄x + Ag(x)] + trace[σT (x)Qσ(x)] ≤ µxT Qx (2.7)

and
|xT Qσ(x)|2 ≥ ρ(xT Qx)2 (2.8)

for all x ∈ Rd. Then the solution of equation (2.6) has the property that

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
(
ρ− µ

2

)
a.s. (2.9)

whenever x0 6= 0. In particular, if ρ > µ/2, then the stochastic neural network
(2.6) is almost surely exponentially stable.

This lemma follows directly from Theorem 4.3.3 by letting V (x) = xT Qx.
We next employ this Lemma to establish a number of useful theorems on the
almost sure exponential stability for the stochastic neural network (2.6).

Theorem 2.2 Let (2.2) hold. Assume that there exists a positive definite
diagonal matrix Q = diag.(q1, q2, · · · , qd) and two real numbers µ > 0 and ρ ≥ 0
such that

trace[σT (x)Qσ(x)] ≤ µxT Qx

and
|xT Qσ(x)|2 ≥ ρ(xT Qx)2

for all x ∈ Rd. Let H = (hij)d×d be the symmetric matrix defined by

hij =
{

2qi[−bi + (0 ∨ aii)βi] for i = j,
qi |aij |βj + qj |aji|βi for i 6= j.
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Then the solution of equation (2.6) has the properties that

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
(

ρ− 1
2

[
µ +

λmax(H)
min1≤i≤n qi

])
a.s. (2.10)

if λmax(H) ≥ 0, or otherwise

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
(

ρ− 1
2

[
µ +

λmax(H)
max1≤i≤n qi

])
a.s. (2.11)

whenever x0 6= 0.

Proof. Compute, by (2.2),

2xT QAg(x) = 2
d∑

i,j=1

xi qi aij gj(xj)

≤ 2
∑

i

qi(0 ∨ aii)xigi(xi) + 2
∑
i 6=j

|xi| qi |aij |βj |xj |

≤ 2
∑

i

qi(0 ∨ aii)βix
2
i +

∑
i 6=j

|xi|(qi |aij |βj + qj |aji|βi)|xj |.

In the case λmax(H) ≥ 0,

2xT Q[−B̄x + Ag(x)] ≤ (|x1|, · · · , |xd|) H (|x1|, · · · , |xd|)T

≤ λmax(H)|x|2 ≤ λmax(H)
min1≤i≤n qi

xT Qx,

and then conclusion (2.10) follows from Lemma 2.1 easily. Similarly, in the case
λmax(H) < 0,

2xT Q[−B̄x + Ag(x)] ≤ λmax(H)|x|2 ≤ λmax(H)
max1≤i≤n qi

xT Qx

and then conclusion (2.11) follows from Lemma 2.1 again.

Theorem 2.3 Let (2.2) and (2.5) hold. Assume that there exist d positive
numbers q1, q2, · · · , qd such that

β2
j

d∑
i=1

qi [0 ∨ sign(aii)]δij |aij | ≤ qjbj , 1 ≤ j ≤ d,

where δij is the Dirac delta function, i.e.

δij =
{

1 for i = j,
0 for i 6= j.
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Assume moreover that

trace[σT (x)Qσ(x)] ≤ µxT Qx

and
|xT Qσ(x)|2 ≥ ρ(xT Qx)2

for all x ∈ Rd, where Q = diag.(q1, q2, · · · , qd), µ > 0 and ρ ≥ 0 are both
constants. Then the solution of equation (2.6) satisfies

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
(
ρ− µ

2

)
a.s.

whenever x0 6= 0.

Proof. Compute, by the conditions,

2xT QAg(x) = 2
d∑

i,j=1

xi qi aij gj(xj)

≤ 2
d∑

i,j=1

|xi| qi [0 ∨ sign(aii)]δij |aij |βj |xj |

≤
d∑

i,j=1

qi [0 ∨ sign(aii)]δij |aij |(x2
i + β2

j x2
j )

≤
d∑

i=1

qi

( d∑
j=1

|aij |
)

x2
i +

d∑
j=1

(
β2

j

d∑
i=1

qi [0 ∨ sign(aii)]δij |aij |
)

x2
j

≤
d∑

i=1

qibix
2
i +

d∑
j=1

qjbjx
2
j = 2xT QB̄x.

Hence
2xT Q[−B̄x + Ag(x)] + trace[σT (x)Qσ(x)] ≤ µxT Qx

and the conclusion follows from Lemma 2.1.

Theorem 2.4 Let (2.2) and (2.5) hold. Assume that the network is symmetric
in the sense

|aij | = |aji| for all 1 ≤ i, j ≤ d.

Assume also that there is a pair of constants µ > 0 and ρ ≥ 0 such that

|σ(x)|2 ≤ µ|x|2 and |xT σ(x)|2 ≥ ρ|x|4

for all x ∈ Rd. Then the solution of equation (2.6) has the properties that

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
[
ρ + b̂(1− β̌)− µ

2

]
a.s. (2.12)
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if β̌ ≤ 1, and

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
[
ρ− b̌(β̌ − 1)− µ

2

]
a.s. (2.13)

if β̌ > 1, whenever x0 6= 0, where

β̌ = max
1≤i≤d

βi, b̌ = max
1≤i≤d

bi, b̂ = min
1≤i≤d

bi.

Proof. Compute

2xT Ag(x) = 2
d∑

i,j=1

xi aij gj(xj)

≤ 2
d∑

i,j=1

|xi| |aij |βj |xj | ≤ β̌

d∑
i,j=1

|aij |(x2
i + x2

j )

= β̌

[ d∑
i=1

( d∑
j=1

|aij |
)

x2
i +

d∑
j=1

( d∑
i=1

|aji|
)

x2
j

]

= β̌

[ d∑
i=1

bix
2
i +

d∑
j=1

bjx
2
j

]
= 2β̌xT B̄x.

Hence
2xT [−B̄x + Ag(x)] ≤ −2(1− β̌)xT B̄x.

If β̌ ≤ 1, then

2xT [−B̄x + Ag(x)] + |σ(x)|2 ≤ [−2b̂(1− β̌) + µ]|x|2

and conclusion (2.12) follows from Lemma 2.1 with Q the identity matrix. On
the other hand, if β̌ > 1, then

2xT [−B̄x + Ag(x)] + |σ(x)|2 ≤ [2b̌(β̌ − 1) + µ]|x|2,

and conclusion (2.13) follows from Lemma 2.1 again.

(ii) Exponential Instability

We now begin to discuss the exponential instability for the stochastic neural
network (2.6). The following lemma is useful

Lemma 2.5 Assume that there exists a symmetric positive definite matrix
Q = (qij)d×d and two real numbers µ ∈ R and ρ > 0 such that

2xT Q[−B̄x + Ag(x)] + trace[σT (x)Qσ(x)] ≥ µxT Qx (2.14)
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and
|xT Qσ(x)|2 ≤ ρ(xT Qx)2 (2.15)

for all x ∈ Rd. Then the solution of equation (2.6) has the property that

lim inf
t→∞

1
t

log(|x(t;x0)|) ≥
µ

2
− ρ a.s. (2.16)

whenever x0 6= 0. In particular, if ρ < µ/2 then the stochastic neural network
(2.6) is almost surely exponentially unstable.

This lemma follows directly from Theorem 4.3.5 by using V (x) = xT Qx.
We now apply this lemma to establish a couple of useful results.

Theorem 2.6 Let (2.2) hold. Assume that there exists a positive definite
diagonal matrix Q = diag.(q1, q2, · · · , qd) and two positive numbers µ and ρ such
that

trace[σT (x)Qσ(x)] ≥ µxT Qx

and
|xT Qσ(x)|2 ≤ ρ(xT Qx)2

for all x ∈ Rd. Let S = (sij)d×d be the symmetric matrix defined by

sij =
{

2qi[−bi + (0 ∧ aii)βi] for i = j,
−qi |aij |βj − qj |aji|βi for i 6= j.

Then the solution of equation (2.6) satisfies

lim inf
t→∞

1
t

log(|x(t;x0)|) ≥
1
2

[
µ +

λmin(S)
min1≤i≤n qi

]
− ρ a.s.

whenever x0 6= 0.

Proof. In the same way as in the proof of Theorem 2.2 one can show that

2xT Q[−B̄x + Ag(x)] ≥ (|x1|, · · · , |xd|) S (|x1|, · · · , |xd|)T ≥ λmin(S)|x|2.

Note that we must have λmin(S) ≤ 0 since all the elements of S are non-positive.
So

2xT Q[−B̄x + Ag(x)] ≥ λmin(S)
min1≤i≤d qi

xT Qx

and the assertion follows from Lemma 2.5 immediately.

Theorem 2.7 Let (2.2) and (2.5) hold. Assume that the network is symmetric
in the sense

|aij | = |aji| for all 1 ≤ i, j ≤ d.
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Assume also that there are two positive constants µ and ρ such that

|σ(x)|2 ≥ µ|x|2 and |xT σ(x)|2 ≤ ρ|x|4

for all x ∈ Rd. Then the solution of equation (2.6) satisfies that

lim inf
t→∞

1
t

log(|x(t;x0)|) ≥
µ

2
− b̌(1 + β̌)− ρ a.s.

whenever x0 6= 0, where

β̌ = max
1≤i≤n

βi and b̌ = max
1≤i≤n

bi.

Proof. Compute

2xT Ag(x) = 2
d∑

i,j=1

xi aij gj(xj)

≥ −2
d∑

i,j=1

|xi| |aij |βj |xj | ≥ −β̌

d∑
i,j=1

|aij |(x2
i + x2

j )

= −β̌
[ d∑

i=1

( d∑
j=1

|aij |
)
x2

i +
d∑

j=1

( d∑
i=1

|aji|
)
x2

j

]

= −β̌
[ d∑

i=1

bix
2
i +

d∑
j=1

bjx
2
j

]
= −2β̌xT B̄x.

Hence
2xT [−B̄x + Ag(x)] ≥ −2(1 + β̌)xT B̄x ≥ −2b̌(1 + β̌)|x|2.

In consequence,

2xT [−B̄x + Ag(x)] + |σ(x)|2 ≥ [µ− 2b̌(1 + β̌)]|x|2,

and the required conclusion follows from Lemma 2.5 with Q the identity matrix.
The proof is complete.

(iii) Robustness of Stability and Stochastic Stabilization

The results obtained in subsection (i) can be applied to study the robustness
of stability as well as to investigate the stochastic stabilization. To explain the
application to the study of robustness of stability, let us suppose that there exists
a symmetric positive definite matrix Q = (qij)d×d and a positive constant µ1

such that
2xT Q[−B̄x + Ag(x)] ≤ −µ1x

T Qx for x ∈ Rn. (2.17)



Sec.10.2] Stochastic Neural Networks 359

It is well-known that hypothesis (2.17) guarantees the exponential stability of
the neural network (2.4). We further assume that the stochastic perturbation is
not too strong in the sense that there is a constant µ2 such that

0 < µ2 <
µ1λmin(Q)
λmax(Q)

and |σ(x)|2 ≤ µ2|x|2 for x ∈ Rn. (2.18)

It is easy to verify that

2xT Q[−B̄x + Ag(x)] + trace[σT (x)Qσ(x)] ≤ −
[
µ1 −

µ2λmax(Q)
λmin(Q)

]
xT Qx.

Thus, by Lemma 2.1 with ρ = 0 (since (2.8) always holds with ρ = 0), the
stochastic neural network (2.6) is almost surely exponentially stable. In other
words, the stochastic perturbation does not change the stability property of the
neural network (2.4).

Let us now discuss the stochastic stabilization. We know that the neural
network (2.4) may be unstable sometimes. Perhaps one might imagine that an
unstable neural network should behave even worse (more unstable) if the net-
work subjects to stochastic perturbations. However, this is not always true. As
every thing has two sides, stochastic perturbations may make the given unstable
network nicer (stable). Indeed, we shall show that any neural network of form
(2.4) can be stabilized by stochastic perturbations. From the practical point of
view we shall restrict ourselves to the linear stochastic perturbation only. In
other words, we only consider the stochastic perturbation of the form

σ(x(t))dB(t) =
m∑

k=1

Gkx(t)dBk(t),

i.e. σ(x) = (G1x,G2x, · · · , Gmx), where Gk, 1 ≤ k ≤ m are all d × d matrices.
In this case, the stochastically perturbed network (2.6) becomes

dx(t) = [−B̄x(t) + Ag(x(t))]dt +
m∑

k=1

Gkx(t)dBk(t) on t ≥ 0. (2.19)

Note that for any symmetric d× d-matrix Q,

trace[σT (x)Qσ(x)] =
m∑

k=1

xT GT
k QGkx

and

|xT Qσ(x)|2 = trace
[
σT (x)QxxT Qσ(x)

]
=

m∑
k=1

xT GT
k QxxT QGkx =

m∑
k=1

(xT QGkx)2.
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We therefore obtain the following useful result from Lemma 2.1.

Theorem 2.8 Assume that there exists a symmetric positive definite matrix
Q = (qij)d×d and two numbers µ ∈ R and ρ ≥ 0 such that

2xT Q[−B̄x + Ag(x)] +
m∑

k=1

xT GT
k QGkx ≤ µxT Qx

and
m∑

k=1

(xT QGkx)2 ≥ ρ(xT Qx)2

for all x ∈ Rd. Then the solution of equation (2.19) satisfies

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
(
ρ− µ

2

)
a.s.

whenever x0 6= 0. In particular, if ρ > µ/2 then the stochastic neural network
(2.19) is almost surely exponentially stable.

Let us explain through examples how we can apply this theorem to stabilize
a given neural network.

Example 2.9 Let
Gk = θkI for 1 ≤ k ≤ m,

where I is the identity matrix and θk, 1 ≤ k ≤ m are all real numbers. Then
equation (2.19) becomes

dx(t) = [−B̄x(t) + Ag(x(t))]dt +
m∑

k=1

θkx(t)dBk(t). (2.20)

Clearly, we can interpret the numbers θk, 1 ≤ k ≤ m as the intensity of the
stochastic perturbation. Choose Q the identity matrix. Then

m∑
k=1

xT GT
k QGkx =

m∑
k=1

|Gkx|2 =
m∑

k=1

θ2
k|x|2 (2.21)

and
m∑

k=1

(xT QGkx)2 =
m∑

k=1

(xT θkx)2 =
m∑

k=1

θ2
k|x|4. (2.22)

Moreover, in view of (2.2), we have

2xT QAg(x) ≤ 2|x| ||A|| |g(x)| ≤ 2β̌||A|| |x|2,

where β̌ = max1≤k≤d βk. Hence

2xT Q[−B̄x + Ag(x)] ≤ 2(β̌||A|| − b̂)|x|2, (2.23)
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where b̂ = min1≤k≤d bk. Combining (2.21)–(2.23) and then applying Theorem
2.8 we see that the solution of equation (2.20) satisfies

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
[
1
2

m∑
k=1

θ2
k − (β̌||A|| − b̂)

]
a.s.

whenever x0 6= 0. In particular, if we choose θk’s sufficiently large for

m∑
k=1

θ2
k > 2(β̌||A|| − b̂),

then the stochastic neural network (2.20) is always almost surely exponentially
stable no matter whether the neural network (2.4) is unstable. Furthermore, if
we let θk = 0 for 2 ≤ k ≤ m, then equation (2.20) becomes an even simpler one

dx(t) = [−B̄x(t) + Ag(x(t))]dt + θ1x(t)dB1(t). (2.24)

That is we only use a scalar Brownian motion as the source of stochastic per-
turbation. This stochastic network is always almost surely exponentially stable
provided

θ2
1 > 2(β̌||A|| − b̂).

From this simple example we see that if a strong enough stochastic pertur-
bation is added onto a neural network u̇(t) = −B̄u(t)+Ag(u(t)) in a certain way
then the network can be stabilized. In other words, we have already obtained
the following general result.

Theorem 2.10 Any neural network of the form

u̇(t) = −B̄u(t) + Ag(u(t))

can be stabilized by Brownian motions provided (2.2) is satisfied. Moreover, one
can even use only a scalar Brownian motion to do so.

Theorem 2.8 ensures that there are many choices for the matrices Gk in
order to stabilize a given network. Of course the choices in Example 2.9 are just
the simplest ones. For illustration we give one more example.

Example 2.11 For each k, choose a positive definite d×d matrix Dk such that

xT Dkx ≥
√

3
2
||Dk|| |x|2,

Obviously, there are lots of such matrices. Let θ be a real number and set
Gk = θDk. Then equation (2.19) becomes

dx(t) = [−B̄x(t) + Ag(x(t))]dt + θ

m∑
k=1

Dkx(t)dBk(t). (2.25)
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Again let Q be the identity matrix. Note that

m∑
k=1

xT GT
k QGkx =

m∑
k=1

|θDkx|2 ≤ θ2
m∑

k=1

||Dk||2|x|2

and
m∑

k=1

(xT QGkx)2 = θ2
m∑

k=1

(xT Dkx)2 ≥ 3θ2

4

m∑
k=1

||Dk||2|x|4.

Combining these together with (2.23) and then applying Theorem 2.8 we obtain
that the solution of equation (2.25) satisfies

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −
[
θ2

4

m∑
k=1

||Dk||2 − (β̌||A|| − b̂)
]

a.s.

whenever x0 6= 0. Particularly, if choose θ sufficiently large for

θ2 >
4(β̌||A|| − b̂)∑m

k=1 ||Dk||2
,

then the stochastic network (2.25) is almost surely exponentially stable.
From the above examples we see clearly that in order to stabilize a given

unstable network the stochastic perturbation should be strong enough. This is
not surprising since if the stochastic perturbation is too weak it may not be
able to change the instability property of the network and we shall see this more
clearly in the next subsection.

(iv) Robustness of Instability and Stochastic Destabilization

The results established in subsection (ii) can be applied to the study of
robustness of instability as well as stochastic destabilization. To explain the
former, let us assume that network (2.4) is exponentially unstable, which is
guaranteed by the condition that

2xT Q[−B̄x + Ag(x)] ≥ µ1x
T Qx, x ∈ Rn (2.26)

for some µ1 > 0 and some symmetric positive definite matrix Q. Assume also
that the stochastic perturbation is so small that

|σ(x)|2 ≤ µ2|x|2, x ∈ Rn, (2.27)

where 0 < µ2 < µ1[λmin(Q)]2/(2||Q||2). Note that

|xT Qσ(x)|2 ≤ µ2||Q||2

[λmin(Q)]2
(xT Qx)2 and trace[σT (x)Qσ(x)] ≥ 0.
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By Lemma 2.5, we therefore see that under conditions (2.26) and (2.27), the
solution of equation (2.6) has the property that

lim inf
t→∞

1
t

log(|x(t;xo)|) ≥
µ1

2
− µ2||Q||2

[λmin(Q)]2
> 0 a.s.

That is, the stochastic neural network (2.6) remains unstable. This supports
once again the fact that if the stochastic perturbation is too weak it will not be
able to change the instability property of the network.

In the previous subsection we have discussed the stochastic stabilization
problem. Let us now turn to consider the opposite problem—stochastic desta-
bilization. That is, we shall add stochastic perturbations onto a given stable
network in the hope that the stochastically perturbed network becomes unsta-
ble. We have seen in the previous subsection that the stochastic perturbation
should be strong enough or else the stability property will not be destroyed.
However, the strength of the perturbation is not the only factor, since, as shown
in the previous subsection, sometimes the stronger the stochastic perturbation
is added the more stable the network becomes. As a matter of fact, the way
how the stochastic perturbation is added onto the network is more important.
From the practical point of view, we again restrict ourselves to linear stochastic
perturbation only. In other words, we still assume the stochastically perturbed
network is described by equation (2.19). Applying Lemma 2.5 to equation (2.19)
we immediately obtain the following useful result.

Theorem 2.12 Assume that there exists a symmetric positive definite matrix
Q = (qij)d×d and two numbers µ ∈ R and ρ > 0 such that

2xT Q[−B̄x + Ag(x)] +
m∑

k=1

xT GT
k QGkx ≥ µxT Qx

and
m∑

k=1

(xT QGkx)2 ≤ ρ(xT Qx)2

for all x ∈ Rd. Then the solution of equation (2.19) satisfies

lim inf
t→∞

1
t

log(|x(t;x0)|) ≥
µ

2
− ρ a.s.

whenever x0 6= 0. In particular, if ρ < µ/2 then the stochastic neural network
(2.19) is almost surely exponentially unstable.

Let us now apply this theorem to show how one can use stochastic pertur-
bation to destabilize a given network.

Example 2.13 First of all, let the dimension of the network d ≥ 3. Let m = d,
that is we choose a d-dimensional Brownian motion (B1(t), B2(t), · · · , Bd(t))T .



364 Stochastic Neural Networks [Ch.10

Let θ be a real number. For each k = 1, 2, · · · , d − 1, define Gk = (gk
ij)d×d

by gk
ij = θ if i = k and j = k + 1 or otherwise gk

ij = 0. Moreover, define
Gd = (gd

ij)d×d by gd
ij = θ if i = d and j = 1 or otherwise gd

ij = 0. Then the
stochastic network (2.19) becomes

dx(t) = [−B̄x(t) + Ag(x(t))]dt + θ


x2(t)dB1(t)

...
xd(t)dBd−1(t)
x1(t)dBd(t)

 . (2.28)

Let Q be the identity matrix. Note that

d∑
k=1

xT GT
k QGkx =

d∑
k=1

|Gkx|2 =
d∑

k=1

|θxk|2 = θ2|x|2. (2.29)

Also, setting xd+1 = x1,

d∑
k=1

(xT QGkx)2 = θ2
d∑

k=1

x2
kx2

k+1

≤ 2θ2

3

d∑
k=1

x2
kx2

k+1 +
θ2

6

d∑
k=1

(x4
k + x4

k+1) ≤
θ2

3
|x|4. (2.30)

Moreover, by (2.2),

2xT Q[−B̄x + Ag(x)] ≥ −2(b̌ + β̌||A||)|x|2, (2.31)

where b̌ = max1≤k≤d bk and β̌ = max1≤k≤d βk. Combining (2.29)–(2.31) and
then applying Theorem 2.12 we see that the solution of equation (2.28) satisfies

lim inf
t→∞

1
t

log(|x(t;x0)|) ≥
θ2

2
− (b̌ + β̌||A||)− θ2

3
=

θ2

6
− (b̌ + β̌||A||) a.s.

whenever x0 6= 0. So the stochastic neural network (2.28) is almost surely
exponentially unstable if

θ2 > 6(b̌ + β̌||A||).

Secondly, let us consider the case when the dimension of the network d is an
even number. Let m = 1, that is choose a scalar Brownian motion B1(t). Let θ
be a real number. Define

G1 =


0 θ
−θ 0 0

. . .

0
0 θ
−θ 0

 .
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Then equation (2.19) becomes

dx(t) = [−B̄x(t) + Ag(x(t))]dt + θ


x2(t)
−x1(t)

...
xd(t)

−xd−1(t)

 dB1(t). (2.32)

Let Q be the identity matrix again. Note that

xT GT
1 QG1x = θ2|x|2 and (xT QG1x)2 = 0. (2.33)

Combining this with (2.31) and then applying Theorem 2.12 we see that the
solution of equation (2.32) satisfies

lim inf
t→∞

1
t

log(|x(t;x0)|) ≥
θ2

2
− (b̌ + β̌||A||) a.s.

whenever x0 6= 0. So the stochastic neural network (2.32) is almost surely
exponentially unstable if

θ2 > 2(b̌ + β̌||A||).

This example proves the following theorem.

Theorem 2.14 Any neural network of the form

ẋ(t) = −B̄x(t) + Ag(x(t))

can be destabilized by Brownian motions provided the dimension d ≥ 2 and (2.2)
is satisfied.

Naturally, one would ask what happens when the dimension d = 1. Al-
though from the practical point of view one-dimensional networks are rare, the
question needs to be answered for the completeness of theory. So let us consider
a one-dimensional network

u̇(t) = −bu(t) + ag(u(t)), (2.34)

where b > 0 and a = b or −b, and g(u) is a sigmoidal real-valued function such
that

ug(u) ≥ 0 and |g(u)| ≤ 1 ∧ β|u| for all −∞ < u < ∞.

Assume β < 1. Then it is easy to verify that the solution, denoted by u(t;x0),
of equation (2.34) with initial value u(0) = x0 6= 0 satisfies

lim sup
t→∞

1
t

log(|u(t;x0)|) ≤ −b
[
1− β

(
0 ∨ sign(a)

)]
< 0.
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In other words, network (2.34) is exponentially stable. Now perturb this network
stochastically and assume the perturbed network is described by

dx(t) = [−bx(t) + ag(x(t))]dt +
m∑

k=1

θkx(t)dBk(t), (2.35)

where θk’s are all real numbers. It is not difficult to show by Theorem 2.8 that
the solution x(t;x0) of equation (2.35) with initial value x(0) = x0 6= 0 satisfies

lim sup
t→∞

1
t

log(|x(t;x0)|) ≤ −b
[
1− β

(
0 ∨ sign(a)

)]
− 1

2

m∑
k=1

θ2
k < 0 a.s.

Hence the stochastic neural network (2.35) becomes even more stable. We there-
fore see that a one-dimensional stable network may not be destabilized by Brow-
nian motions if the stochastic perturbation is restricted to be linear.

10.3 STOCHASTIC NEURAL NETWORKS WITH DELAYS

In many networks, time delays can not be avoided. For example, in elec-
tronic neural networks, time delays will be present due to the finite switching
speed of amplifiers. In a similar way as Hopfield (1982), a model for a network
with delays can be described by a differential delay equation

Ciu̇i(t) = − 1
Ri

ui(t) +
d∑

j=1

Tijgj(uj(t− τj)), 1 ≤ i ≤ d, (3.1)

where Ci, Ri etc. are the same as described in the previous section while τj ’s
are positive constants and stand for the time delays. Let A, B̄, g and u be the
same as defined in the previous section and define

uτ (t) = (u1(t− τ1), · · · , ud(t− τd))T .

Then equation (3.1) can be re-written as

u̇(t) = −B̄u(t) + Ag(uτ (t)). (3.2)

In this section we shall discuss the stochastic effects to this delay neural network.
Suppose that there exists a stochastic perturbation to the delay neural network
(3.2) and the stochastically perturbed network is described by the stochastic
differential delay equation

dx(t) = [−B̄x(t) + Ag(xτ (t))]dt + σ(x(t), xτ (t))dB(t) on t ≥ 0 (3.3)

with initial data x(s) = ξ(s) for −τ̄ ≤ s ≤ 0. Here

xτ (t) = (x1(t− τ1), · · · , xd(t− τd))T , σ : Rd ×Rd → Rd×m,

τ̄ = max
1≤i≤d

τi, ξ = {ξ(s) : −τ̄ ≤ s ≤ 0} ∈ C([−τ̄ , 0];Rd).
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We assume that σ(x, y) is locally Lipschitz continuous and satisfies the linear
growth condition as well. By the theory of Chapter 5, equation (3.3) has a
unique global solution on t ≥ 0 and we denote the solution by x(t; ξ). Moreover,
we also assume that σ(0, 0) = 0 for the stability purpose and hence equation
(3.3) admits a trivial solution x(t; 0) ≡ 0.

Theorem 3.1 Let (2.2) hold. Assume that there exist d positive constants
δi, 1 ≤ i ≤ d such that the symmetric matrix

H =
(

C A
AT D

)
is negative definite, where

C = diag.(−2b1 + δ1β
2
1 , · · · ,−2bd + δdβ

2
d) and D = diag.(−δ1, · · · ,−δd).

Let −λ = λmax(H) (so λ > 0). Assume also that there exists an µ ∈ [0, λ) such
that

|σ(x, y)|2 ≤ µ|x|2 + λ|g(y)|2 (3.4)

for all (x, y) ∈ Rd × Rd. Then the solution of equation (3.3) has the property
that

lim sup
t→∞

1
t

log(E|x(t; ξ)|2) ≤ −ε, (3.5)

where ε ∈ (0, λ− µ) is the unique root to the equation

max
1≤i≤d

(
εδiτiβ

2
i eετi + ε

)
= λ− µ. (3.6)

In other words, the stochastic delay network (3.3) is exponentially stable in mean
square.

Proof. Fix the initial data ξ arbitrarily and write x(t; ξ) = x(t). Introduce a
Lyapunov function

V (x, t) = |x|2 +
d∑

i=1

δi

∫ 0

−τi

g2
i (xi(t + s))ds

for (x, t) ∈ Rd × [0,∞). By the Itô formula,

dV (x(t), t) =
( d∑

i=1

δi[g2
i (xi(t))− g2

i (xi(t− τi))]

+ 2xT (t)[−B̄x(t) + Ag(xτ (t))] + |σ(x(t), xτ (t))|2
)

dt

+ 2xT (t)σ(x(t), xτ (t))dB(t). (3.7)
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By (2.2) and the hypothesis on H one can derive that

d∑
i=1

δi[g2
i (xi(t))− g2

i (xi(t− τi))] + 2xT (t)[−B̄x(t) + Ag(xτ (t))]

≤ (xT (t), gT (xτ (t)))H

(
x(t)

g(xτ (t))

)
≤ −λ(|x(t)|2 + |g(xτ (t))|2).

Also by (3.4),
|σ(x(t), xτ (t))|2 ≤ µ|x(t)|2 + λ|g(xτ (t))|2.

Substituting these into (3.7) yields

dV (x(t), t) ≤ −(λ− µ)|x(t)|2dt + 2xT (t)σ(x(t), xτ (t))dB(t). (3.8)

Let 0 < ε < λ− µ be the root to equation (3.6). By Itô’s formula again,

d[eεtV (x(t), t)] = eεt
[
εV (x(t), t)dt + dV (x(t), t)

]
≤ eεt

[
ε

d∑
i=1

δi

∫ 0

−τi

g2
i (xi(t + s))ds− (λ− µ− ε)|x(t)|2

]
dt

+ 2eεtxT (t)σ(x(t), xτ (t))dB(t),

where (3.8) has been used. Integrating both sides of this inequality from 0 to
T > 0 and then taking the expectation one obtains that

eεT EV (x(T ), T ) ≤ c1

+ E

∫ T

0

eεt

[
ε

d∑
i=1

δi

∫ 0

−τi

g2
i (xi(t + s))ds− (λ− µ− ε)|x(t)|2

]
dt, (3.9)

where

c1 = |ξ(0)|2 +
d∑

i=1

δiτi.

Compute

∫ T

0

eεt

∫ 0

−τi

g2
i (xi(t + s))dsdt =

∫ T

0

eεt

∫ t

t−τi

g2
i (xi(s))dsdt

=
∫ T

−τi

[∫ (s+τi)∧T

s∨0

eεtdt

]
g2

i (xi(s))ds ≤
∫ T

−τi

τie
ε(s+τi)g2

i (xi(s))ds

≤τ2
i eετi + τiβ

2
i eετi

∫ T

0

eεs|xi(s)|2ds. (3.10)
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Consequently, in light of (3.6),

∫ T

0

eεt
(
ε

d∑
i=1

δi

∫ 0

−τi

g2
i (xi(t + s))ds

)
dt

≤ c2 + (λ− µ− ε)
∫ T

0

eεt|x(t)|2dt, (3.11)

where

c2 = ε

d∑
i=1

δiτ
2
i eετi .

Substituting (3.11) into (3.9) yields

eεT EV (x(T ), T ) ≤ c1 + c2.

In particular,
eεT E|x(T )|2 ≤ c1 + c2.

Therefore

lim sup
T→∞

1
T

log(E|x(T )|2) ≤ −ε

which is the required (3.5). The proof is complete.
In this theorem, condition (3.4) is a little bit restrictive although it cov-

ers some interesting cases (see examples below). The following theorem is an
improvement.

Theorem 3.2 Assume that all the conditions of Theorem 3.1 hold except (3.4)
is replaced by

|σ(x, y)|2 ≤ µ|x|2 + λ|g(y)|2 + ρ|y|2 (3.12)

for all (x, y) ∈ Rd ×Rd, where µ and ρ are both nonnegative numbers such that

µ + ρ < λ.

Then the solution of equation (3.3) satisfies

lim sup
t→∞

1
t

log(E|x(t; ξ)|2) ≤ −ε, (3.13)

where ε ∈ (0, λ− µ− δ) is the unique solution to

max
1≤i≤d

[
(εδiτiβ

2
i + ρ)eετi + ε

]
= λ− µ. (3.14)
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Proof. Again fix ξ arbitrarily and write x(t; ξ) = x(t). Let ε ∈ (0, λ − µ − ρ)
be the unique solution to equation (3.14) and T > 0. In the same way as in the
proof of Theorem 3.1 we can show that

eεT EV (x(T ), T ) ≤ c1 + E

∫ T

0

eεt

{
ε

d∑
i=1

δi

∫ 0

−τi

g2
i (xi(t + s))ds

− (λ− µ− ε)|x(t)|2 + ρ|xτ (t)|2
}

dt. (3.15)

Compute

∫ T

0

ρeεt|xτ (t)|2dt =
d∑

i=1

∫ T

0

ρeεt|xi(t− τi)|2dt

=
d∑

i=1

∫ T−τi

−τi

ρeε(t+τi)|xi(t)|2dt ≤ c3 +
d∑

i=1

ρeετi

∫ T

0

eεt|xi(t)|2dt, (3.16)

where
c3 = ρτ̄eετ̄ sup

−τ̄≤s≤0
|ξ(s)|2.

Combining (3.10), (3.14) and (3.16) we obtain that

∫ T

0

eεt
(
ε

d∑
i=1

δi

∫ 0

−τi

g2
i (xi(t + s))ds + ρ|xτ (t)|2

)
dt

≤ c2 + c3 +
d∑

i=1

(εδiτiβ
2
i + ρ)eετi

∫ T

0

eεt|xi(t)|2dt

≤ c2 + c3 + (λ− µ− ε)
∫ T

0

eεt|x(t)|2dt. (3.17)

Substituting (3.17) into (3.15) gives

eεT EV (x(T ), T ) ≤ c1 + c2 + c3.

The remainder of the proof is the same as before. The proof is complete.

With slightly more careful arguments we can show the following even more
general result.

Theorem 3.3 Assume that all the conditions of Theorem 3.1 hold except (3.4)
is replaced by

|σ(x, y)|2 ≤
d∑

i=1

(µix
2
i + ρiy

2
i ) + λ|g(y)|2 (3.18)
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for all (x, y) ∈ Rd ×Rd, where µi and ρi are all nonnegative numbers such that

µi + ρi < λ for all 1 ≤ i ≤ d. (3.19)

Then the solution of equation (3.3) satisfies

lim sup
t→∞

1
t

log(E|x(t; ξ)|2) ≤ −ε,

where ε ∈ (0, min1≤i≤d(λ− µi − ρi)) is the unique solution to

max
1≤i≤d

[
(εδiτiβ

2
i + ρi)eετi + µi + ε

]
= λ.

The details of the proof are left to the reader. We shall now use this theorem
to establish a number of useful corollaries.

Corollary 3.4 Let (2.2) and (2.5) hold. Assume that

bi > β2
i

d∑
j=1

|aji| for all 1 ≤ i ≤ d.

Assume also that both (3.18) and (3.19) are satisfied with

λ = min
1≤i≤d

bi − β2
i

∑d
j=1 |aji|

1 + β2
i

.

Then the stochastic delay network (3.3) is exponentially stable in mean square.

Proof. Set

δi =
bi +

∑d
j=1 |aji|

1 + β2
i

for all 1 ≤ i ≤ d.

Let the symmetric matrix H be the same as defined in Theorem 3.1. We claim
that λmax(H) ≤ −λ. In fact, for any x, y ∈ Rd,

(xT , yT ) H

(
x

y

)
=

d∑
i=1

(−2bi + δiβ
2
i )x2

i + 2
d∑

i,j=1

aijxiyj −
d∑

i=1

δiy
2
i

≤
d∑

i=1

(−2bi + δiβ
2
i )x2

i +
d∑

i,j=1

|aij |(x2
i + y2

j )−
d∑

i=1

δiy
2
i

= −
d∑

i=1

(bi − δiβ
2
i )x2

i −
d∑

i=1

(
δi −

d∑
j=1

|aji|
)
y2

i ,
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where condition (2.5) has been used. But

bi − δiβ
2
i = δi −

d∑
j=1

|aji| =
bi − β2

i

∑d
j=1 |aji|

1 + β2
i

≥ λ.

So

(xT , yT ) H

(
x

y

)
≤ −λ(|x|2 + |y|2).

Now the conclusion of the corollary follows from Theorem 3.3 immediately. The
proof is complete.

Corollary 3.5 Let (2.2) hold. Assume that

2bi > ||A||(1 + β2
i ) for all 1 ≤ i ≤ d.

Assume also that both (3.18) and (3.19) are satisfied with

λ = min
1≤i≤d

( 2bi

1 + β2
i

− ||A||
)
.

Then the stochastic delay network (3.3) is exponentially stable in mean square.

Proof. Let

δi =
2bi

1 + β2
i

for all 1 ≤ i ≤ d

and then define the symmetric matrix H the same as in Theorem 3.1. One can
then show λmax(H) ≤ −λ in the same way as in the proof of Corollary 3.4, and
hence the conclusion follows from Theorem 3.3. The proof is complete.

In practice, networks are often symmetric in the sense |aij | = |aji|. For
such symmetric networks we have the following useful result.

Corollary 3.6 Let (2.2) and (2.5) hold. Assume that the network is symmetric
in the sense

|aij | = |aji| for all 1 ≤ i, j ≤ d.

Assume that
βi < 1 for all 1 ≤ i ≤ d.

Assume also that both (3.18) and (3.19) are satisfied with

λ = min
1≤i≤d

bi(1− β2
i )

1 + β2
i

. (3.20)

Then the stochastic delay network (3.3) is exponentially stable in mean square.
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Proof. By the assumptions,

β2
i

d∑
j=1

|aji| <
d∑

j=1

|aij | = bi

for all 1 ≤ i ≤ d. Also

min
1≤i≤d

bi − β2
i

∑d
j=1 |aji|

1 + β2
i

= min
1≤i≤d

bi(1− β2
i )

1 + β2
i

.

Hence the conclusion follows from Corollary 3.4 directly. The proof is complete.

Let us now turn to discuss the almost sure exponential stability for the
stochastic delay network (3.3). The following lemma is useful.

Lemma 3.7 Let (2.2) hold. Assume that there exists a constant K > 0 such
that

|σ(x, y)|2 ≤ K(|x|2 + |y|2) for all x, y ∈ Rd. (3.21)

If

lim sup
t→∞

1
t

log(E|x(t; ξ)|2) ≤ −γ (3.22)

for some γ > 0, then

lim sup
t→∞

1
t

log(|x(t; ξ)|) ≤ −γ

2
a.s. (3.23)

In other words, under conditions (2.2) and (3.21), the exponential stability in
mean square of equation (3.3) implies the almost sure exponential stability.

Proof. Fix any ξ and write x(t; ξ) = x(t) again. Let ε ∈ (0, γ/2) be arbitrary.
By (3.22) there is a constant M > 0 such that

E|x(t)|2 ≤ Me−(γ−ε)t for all t ≥ −τ. (3.24)

Let k = 1, 2, · · ·. By the Doob martingale inequality, the Hölder inequality as
well as conditions (2.2) and (3.21), one can easily show that

E

[
sup

k≤t≤k+1
|x(t)|2

]
≤ 3E|x(k)|2 + c4

∫ k+1

k

[
E|x(t)|2 + E|xτ (t)|2

]
dt, (3.25)

where c4 and the following c5 are both positive constants independent of k. Note
that

E|xτ (t)|2 =
d∑

i=1

E|xi(t− τi)|2 ≤
d∑

i=1

E|x(t− τi)|2.
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Substituting this and (3.24) into (3.25) yields

E

[
sup

k≤t≤k+1
|x(t)|2

]
≤ c5e

−(γ−ε)k. (3.26)

Consequently

P

{
ω : sup

k≤t≤k+1
|x(t)|2 > e−(γ−2ε)k

}
≤ c5e

−εk.

By the Borel–Cantelli lemma, one sees that for almost all ω ∈ Ω there exists a
random integer k0(ω) such that for all k ≥ k0,

sup
k≤t≤k+1

|x(t)|2 ≤ e−(γ−2ε)k.

This implies that

lim sup
t→∞

1
t

log(|x(t; ξ)|) ≤ −γ

2
+ ε a.s.

Finally the desired (3.23) follows by letting ε → 0. The proof is complete.

The following result follows immediately from this lemma and Theorem 3.3
etc.

Theorem 3.8 Let (2.2) and (3.21) hold. Then, under the conditions of Theorem
3.3 or one of Corollary 3.4–3.6, the stochastic delay network (3.3) is almost
surely exponentially stable.

Let us now discuss a number of examples to illustrate our theory.

Example 3.9 Consider the 2-dimensional stochastic delay network

d

(
x1(t)
x2(t)

)
=

(
−4 0

0 −2

) (
x1(t)
x2(t)

)
dt +

(
2 −2
1 1

) (
g1(x1(t− τ1))
g2(x2(t− τ2))

)
dt

+ G1

(
g1(x1(t− τ1))
g2(x2(t− τ2))

)
dB(t). (3.27)

Here τ1, τ2 are both positive constants, B(t) a real-valued Brownian motion, G1

a 2× 2 constant matrix, and

gi(u) =
eu − e−u

eu + e−u
for u ∈ R, i = 1, 2.

So (2.2) is satisfied with βi = 1. To apply Theorem 3.1, let δ1 = 4 and δ2 = 2.
Then

H =


−4 0 2 −2

0 −2 1 1
2 1 −4 0

−2 1 0 −2

 .
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It is not difficult to compute λmax(H) = −0.2474. Note also that

σ(x, y) = G1g(y) for (x, y) ∈ R2 ×R2,

where g(y) = (g1(y1), g2(y2))T . Hence

|σ(x, y)|2 = |G1g(y)|2 ≤ ||G1||2|g(y)|2.

Therefore, if
||G1||2 ≤ 0.2474, (3.28)

then, by Theorem 2.1, the stochastic delay network (3.27) is exponentially stable
in mean square. Moreover, let ε > 0 be the root to the equation

max{4ετ1e
ετ1 + ε, 2ετ2e

ετ2 + ε} = 0.2474. (3.29)

Then the second moment Lyapunov exponent should not be greater than −ε.
For example, if τ1 = 0.005 and τ2 = 0.01, then (3.29) becomes

0.02εe0.01ε + ε = 0.2474,

which has the root ε = 0.24253, hence in this case the second moment Lya-
punov exponent should not be greater than −0.24253. In view of Theorem 3.8,
we can also conclude that the stochastic delay network (3.27) is almost surely
exponentially stable as long as (3.28) is satisfied.

Example 3.10 Consider a more general stochastic delay network than (3.27)
which is described by the equation

d

(
x1(t)
x2(t)

)
=

(
−4 0

0 −2

) (
x1(t)
x2(t)

)
dt +

(
2 −2
1 1

) (
g1(x1(t− τ1))
g2(x2(t− τ2))

)
dt

+ G1

(
g1(x1(t− τ1))
g2(x2(t− τ2))

)
dB1(t) + G2

(
x1(t)
x2(t)

)
dB2(t)

+ G3

(
x1(t− τ1)
x2(t− τ2)

)
dB3(t). (3.30)

Here (B1(t), B2(t), B3(t)) is a 3-dimensional Brownian motion, g1 and g2 are the
same as in Example 3.9 while Gi, 1 ≤ i ≤ 3 are all 2 × 2 constant matrices.
Assume that (3.28) holds and also

||G2||2 ∨ ||G3||2 ≤ 0.1. (3.31)

Note in this case that

σ(x, y) = (G1g(y), G2x,G3y) for (x, y) ∈ R2 ×R2,
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where g(y) = (g1(y1), g2(y2))T . So

|σ(x, y)|2 = |G1g(y)|2 + |G2x|2 + |G3y|2

≤ 0.2474|g(y)|2 + 0.1|x|2 + 0.1|y|2.
Therefore, by Theorems 3.2 and 3.8, we conclude that the stochastic delay net-
work (3.30) is exponentially stable in mean square and is also almost surely
exponentially stable. Moreover, if ε > 0 is the root to the equation

max{(4ετ1 + 0.1)eετ1 + ε, (2ετ2 + 0.1)eετ2 + ε} = 0.1474, (3.32)

then the second moment Lyapunov exponent should not be greater than −ε.
For example, if τ1 = τ2 = 0.01, then equation (3.32) becomes

(0.04ε + 0.1)e0.01ε + ε = 0.1474

which has the root ε = 0.04553, and hence the second moment Lyapunov expo-
nent should not be greater than −0.04553 and the sample Lyapunov exponent
should not be greater than −0.022765.

Example 3.11 Finally, consider the 3-dimensional symmetric stochastic delay
network

dx(t) = [−B̄x(t) + Ag(xτ (t))]dt + G1x(t)dB1(t)

+ G2

 sin(x1(t− τ1))
sin(x2(t− τ2))
sin(x3(t− τ3))

 dB2(t). (3.33)

Here (B1(t), B2(t)) is a 2-dimensional Brownian motion, G1 and G2 are both
3× 3 constant matrices, and

B̄ = diag.(2, 3, 4), A =

 0 1 1
1 1 1
1 1 2

 ,

gi(ui) = (0.5ui ∧ 1) ∨ (−1), g(u) = (g1(u1), g2(u2), g3(u3))T .

Note that (2.2) and (2.5) are satisfied with β1 = β2 = β3 = 0.5. To apply
Corollary 3.6, we compute λ = 1.2 by (3.20). Assume that

||G1||2 < 1.2 and ||G2||2 ≤ 0.3. (3.34)

Note that
σ(x, y) = (G1x,G2(sin y1, sin y2, sin y3)T )

for (x, y) ∈ R3 ×R3. Note also that

sin2 z ≤
[
(z ∧ 1) ∨ (−1)

]2 ≤ 4
[
(0.5z ∧ 1) ∨ (−1)

]2 for −∞ < z < ∞.

Hence

|σ(x, y)|2 ≤ ||G1||2|x|2 + 4||G2||2|g(y)|2

≤ ||G1||2|x|2 + 1.2|g(y)|2.
Applying Corollary 3.6 and Theorem 3.8 we can conclude that the stochastic
delay network (3.33) is exponentially stable in mean square and is also almost
surely exponentially stable.
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Stochastic Delay Population Systems

11.1 INTRODUCTION

The d-dimensional delay differential equation

dx(t)
dt

= diag(x1(t), · · · , xd(t))[b+Ax(t) +Gx(t− τ)], (1.1)

has been used to model the population growth of d interacting species and is
known as the delay Lotka–Volterra model, or the delay logistic equation. Here

x = (x1, · · · , xd)T , b = (b1, · · · , bd)T , A = (aij)d×d, G = (gij)d×d.

This equation may sometimes be written as

dx(t)
dt

= diag(x1(t), · · · , xd(t))[A(x(t)− x̄) +G(x(t− τ)− x̄)],

when x̄ = (x̄1, · · · , x̄d)T is an equilibrium state of the equation in the positive
cone Rd

+ = {x ∈ Rd : xi > 0, 1 ≤ i ≤ d}, that is,

b+ (A+G)x̄ = 0.

There is an extensive literature concerned with the dynamics of this delay model.
In particular, the books by Gopalsamy (1992), Kolmanovskii and Myshkis (1992)
as well as Kuang (1993) are good references in this area.

On the other hand, population systems are often subject to environmental
noise and there are different types of noise. For example, recall that the param-
eter bi represents the intrinsic growth rate of species i. In practice we usually

377
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estimate it by an average value plus an error term. If we still used bi to denote
the average growth rate, then the intrinsic growth rate becomes bi + errori. Let
us consider a small subsequent time interval dt, during which xi(t) changes to
xi(t) + dxi(t). Accordingly, equation (1.1) becomes

dxi(t) = xi(t)
(
bi +

d∑
j=1

[ aijxj(t) + gijxj(t− τ) ]
)
dt+ xi(t) errori dt

for 1 ≤ i ≤ d. According to the well-known central limit theorem, the error
term errori dt may be approximated by a normal distribution with mean zero
and variance v2

i dt. In terms of mathematics, errori dt ∼ N(0, v2
i dt), which can be

written as errori dt ∼ vidB(t), where dB(t) = B(t+ dt)−B(t) is the increment
of a Brownian motion that follows N(0, dt). Hence equation (1.1) becomes the
Itô stochastic differential equation

dxi(t) = xi(t)
[(
bi +

d∑
j=1

[ aijxj(t) + gijxj(t− τ) ]
)
dt+ vidB(t)

]
,

that is, in the matrix form,

dx(t) = diag(x1(t), · · · , xd(t))
(
[b+Ax(t) +Gx(t− τ)]dt+ vdB(t)

)
, (1.2)

where v = (v1, · · · , vd)T , which is the vector of the standard deviations of the
errors, known as the noise intensities. These intensities may or may not depend
on population sizes. If they are independent of population sizes, we can write
v as a constant vector β = (β1, · · · , βd)T . As a result, equation (1.2) becomes a
stochastic delay population system (SDPS)

dx(t) = diag(x1(t), · · · , xd(t))
(
[b+Ax(t) +Gx(t− τ)]dt+ βdB(t)

)
. (1.3)

If the noise intensities are dependent on population sizes, we may replace vi by

d∑
j=1

σijxj(t) (1.4)

and hence equation (1.2) becomes

dx(t) = diag(x1(t), · · · , xd(t))
(
[b+Ax(t) +Gx(t− τ)]dt+ σx(t)dB(t)

)
, (1.5)

where σ = (σij)d×d. However, the noise intensities may sometimes depend on
the difference between the population size and the equilibrium state. In other
words, vi may have the form

d∑
j=1

σij(xj(t)− x̄j). (1.6)
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In this case, equation (1.1) becomes another SDPS

dx(t) = diag(x1(t), · · · , xd(t))

×
(
[A(x(t)− x̄) +G(x(t− τ)− x̄)]dt+ σ(x(t)− x̄)dB(t)

)
. (1.7)

Of course, there are other types of noise but we will, in this chapter, concentrate
on the three types above, i.e. equations (1.3), (1.5) and (1.7). Since these
systems describe stochastic population dynamics, it is critical to find out whether
or not the solutions
• will remain positive or never become negative,
• will explode to infinity in a finite time,
• will be ultimately bounded,
• will become extinct.

We will discuss the different behaviours of these three equations and hence
reveal that different types of noise affect on the delay population systems dif-
ferently. We should also mention that the driving white noise is usually multi-
dimensional but we here use a one-dimensional one in order to avoid complicated
notation.

Before we proceed, let us introduce a new notation. For a symmetric matrix
A = (aij)d×d ∈ Rd×d, define

λ+
max(A) = sup

x∈Rd
+,|x|=1

xTAx.

It should be highlighted that this is different from the largest eigenvalue λmax(A).
To see this more clearly, let us recall the nice property of the largest eigenvalue:

λmax(A) = sup
x∈Rd,|x|=1

xTAx.

It is therefore clear that we always have

λ+
max(A) ≤ λmax(A).

In many situations we even have λ+
max(A) < λmax(A). For example, for

A =
(
−1 −1
−1 −1

)
,

we have λ+
max(A) = −1 < λmax(A) = 0. On the other hand, λ+

max(A) does have
many similar properties as λmax(A) has. For example, it follows straightforward
from the definition that

xTAx ≤ λ+
max(A)|x|2 ∀x ∈ Rd

+
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and
λ+

max(A) ≤ ‖A‖.

Moreover
λ+

max(A+B) ≤ λ+
max(A) + λ+

max(B)

if B is another Rd×d-valued symmetric matrix.
The results established in this chapter require to verify λ+

max(A) ≤ 0 or
λ+

max(A) < 0. It is easy to see from the definition that λ+
max(A) ≤ 0 if

aij ≤ 0 for all 1 ≤ i, j ≤ d.

But the following two lemmas give better results.

Lemma 1.1 We always have

λ+
max(A) ≤ max

1≤i≤d

(
aii +

∑
j 6=i

(0 ∨ aij)
)
. (1.8)

Consequently, λ+
max(A) ≤ 0 if

aii ≤ −
∑
j 6=i

(0 ∨ aij), 1 ≤ i ≤ d;

while λ+
max(A) < 0 if

aii < −
∑
j 6=i

(0 ∨ aij), 1 ≤ i ≤ d.

Proof. For any x ∈ Rd
+ with |x| = 1, compute

xTAx =
d∑

i=1

d∑
j=1

aijxixj ≤
d∑

i=1

aiix
2
i +

d∑
i=1

∑
j 6=1

(0 ∨ aij)xixj

≤
d∑

i=1

aiix
2
i +

1
2

d∑
i=1

∑
j 6=1

(0 ∨ aij)(x2
i + x2

j ) =
d∑

i=1

aiix
2
i +

d∑
i=1

( ∑
j 6=1

(0 ∨ aij)
)
x2

i

=
d∑

i=1

(
aii +

∑
j 6=1

(0 ∨ aij)
)
x2

i ≤ max
1≤i≤d

(
aii +

∑
j 6=i

(0 ∨ aij)
)
.

Thus the required assertion (1.8) follows.

Lemma 1.2 Given a symmetric matrix A = (aij)d×d, we define its associated
matrix Ã = (ãij)d×d by

ãii = aii, 1 ≤ i ≤ d
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while
ãij = 0 ∨ aij , 1 ≤ i, j ≤ d, i 6= j.

Then λ+
max(A) ≤ λmax(Ã).

Proof. Clearly,
aij ≤ ãij , 1 ≤ i, j ≤ d.

By definition, it is easy to see that

λ+
max(A) ≤ λ+

max(Ã).

But we always have
λ+

max(Ã) ≤ λmax(Ã).

The required assertion hence follows.

11.2 NOISE INDEPENDENT OF POPULATION SIZES

Let us begin with the discussion of the SDPS (1.3), where the environmen-
tal noise is independent of the population sizes. In general, the solution of a
population system should not only be positive but would also not explode to
infinity at any finite time. For this purpose, some conditions need to be imposed
on the system parameters. Even for the deterministic equation (1.1) the system
matrices A and G need to satisfy some conditions (see e.g. Gopalsamy (1992),
Kolmanovskii and Myshkis (1992), Kuang (1993)) and the research for better
conditions is still going on.

Similary, for an SDPS to have a unique global solution (i.e. no explosion
in a finite time) for any given initial data, the coefficients of the equation are
in general required to obey the linear growth condition and the local Lipschitz
condition (see Chapter 5). However, the coefficients of the SDPS (1.3) do not
satisfy the linear growth condition, though they are locally Lipschitz continuous,
so the solution of the SDPS (1.3) may explode at a finite time. It is therefore
useful to establish some conditions under which the solution of the SDPS (1.3)
is not only positive but will also not explode to infinity at any finite time. The
following result gives a sufficient condition.

Theorem 2.1 Assume that there are positive numbers c1, · · · , cd such that

λ+
max(C̄A+AT C̄) < 0, (2.1)

where C̄ = diag(c1, · · · , cd). Then for any given initial data {x(t) : −τ ≤ t ≤
0} ∈ C([−τ, 0];Rd

+), there is a unique solution x(t) to the SDPS (1.3) on t ≥ −τ
and the solution will remain in Rd

+ with probability 1, namely x(t) ∈ Rd
+ for all

t ≥ −τ almost surely.
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It is useful to note that this theorem does not impose any condition on the
system parameters b, G and β. In order to prove this theorem let us present a
lemma.

Lemma 2.2 The following inequality holds

u ≤ 2(u− 1− log u) + 2 ∀u > 0.

Proof. The inequality holds for u ∈ (0, 2) because we always have u−1−log u ≥
0 for u > 0. To show the inequality for u ≥ 2, let us define

f(u) = u− 2 log u.

Note
df(u)
du

= 1− 2
u
≥ 0.

So f(u) is nondecreasing on u ≥ 2 and hence

2(u− 1− log u) + 2− u = u− 2 log u = f(u) ≥ f(2) = 2− 2 log 2 > 0.

In other words, the desired inequality holds for u ≥ 2 as well.

Proof of Theorem 2.1. Since the coefficients of the equation are locally Lipschitz
continuous, by Theorem 5.2.8, we observe that for any given initial data {x(t) :
−τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+) there is a unique maximal local solution x(t) on
t ∈ [−τ, τe), where τe is the explosion time. Let k0 > 0 be sufficiently large for

1
k0

< min
−τ≤t≤0

|x(t)| ≤ max
−τ≤t≤0

|x(t)| < k0.

For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : xi(t) 6∈ (1/k, k) for some i = 1, · · · , d}.

Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence τ∞ ≤ τe a.s.
If we can show that τ∞ = ∞ a.s., then τe = ∞ a.s. and x(t) ∈ Rd

+ a.s. for all
t ≥ 0. In other words, to complete the proof all we need to show is that τ∞ = ∞
a.s. To show this statement, let us define a C2-function V : Rd

+ → R+ by

V (x) =
n∑

i=1

ci

[
xi − 1− log(xi)

]
.

The non-negativity of this function can be seen from that u− 1− log(u) ≥ 0 on
u > 0. For 0 ≤ t < τ∞, it is not difficult to show by the Itô formula that

dV (x(t)) = LV (x(t), x(t− τ))dt+ (xT (t)C̄ − C)βdB(t), (2.2)
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where C = (c1, · · · , cd) and LV : Rd
+ ×Rd

+ → R is defined by

LV (x, y) = (xT C̄ − C)(b+Ax+Gy) +
1
2
βT C̄β. (2.3)

Using condition (2.1) we can show that

LV (x, y) ≤ K1(1 + |x|+ |y|)− λ|x|2 +K2|y|2, (2.4)

where K1,K2 and the following K3 are all positive constants and

λ := −1
4
λ+

max(C̄A+AT C̄) > 0.

By Lemma 2.2, we can show that

|x| ≤ 2d+
2

min1≤i≤d ci
V (x), ∀x ∈ Rd

+. (2.5)

In view of (2.4) and (2.5), we obtain from (2.2) that

dV (x(t)) ≤
[
K3(1 + V (x(t)) + V (x(t− τ)))− λ|x(t)|2 +K2|x(t− τ)|2

]
dt

+ (xT (t)C̄ − C)βdB(t). (2.6)

Now, for any k ≥ k0 and t1 ∈ [0, τ ], we can integrate both sides of (2.6) from 0
to τk ∧ t1 and then take the expectations to get

EV (x(τk ∧ t1)) ≤ K4 +K3E

∫ τk∧t1

0

V (x(t))dt− λE

∫ τk∧t1

0

|x(t))|2dt, (2.7)

where

K4 = V (x(0)) +K3τ +
∫ τ

0

[
K3V (x(t− τ)) +K2|x(t− τ)|2

]
dt <∞.

It follows from (2.7) that

EV (x(τk ∧ t1)) ≤ K4 +K3

∫ t1

0

EV (x(τk ∧ t))dt.

By the Gronwall inequality we then obtain that

EV (x(τk ∧ t1)) ≤ K4e
τK3 , 0 ≤ t1 ≤ τ, k ≥ k0. (2.8)

In particular, EV (x(τk ∧ τ)) ≤ K4e
τK3 for all k ≥ k0. From this we can easily

show τ∞ ≥ τ a.s. which we leave to the reader as an exercise. Now, letting
k →∞ in (2.8) gives

EV (x(t1)) ≤ K4e
τK3 , 0 ≤ t1 ≤ τ. (2.9)
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Moreover, setting t1 = τ in (2.7) and then letting k →∞ we see that

E

∫ τ

0

|x(t))|2dt ≤ 1
λ

(
K4 + τK3K4e

τK3

)
<∞. (2.10)

Repeating this procedure, we can then show τ∞ ≥ 2τ a.s. and then τ∞ ≥ mτ
a.s. for any integer m ≥ 1. We must therefore have τ∞ = ∞ a.s. as required.
The proof is therefore complete.

One of the important properties in a population system is the ultimate
boundedness. For the solution x(t) of the deterministic delay equation (1.1), the
ultimate boundedness means that there is a positive constant K independent of
the initial data such that

lim sup
t→∞

|x(t)| ≤ K.

The most natural analogue for the SDPS (1.3) is

lim sup
t→∞

E|x(t)| ≤ K.

In this case, equation (1.3) is said to be ultimately bounded in mean. The fol-
lowing theorem gives a criterion for this property.

Theorem 2.3 Assume that there are positive numbers c1, · · · , cn and θ such
that

−λ := λ+
max

(1
2
(C̄A+AT C̄) +

1
4θ
C̄GGT C̄ + θI

)
< 0, (2.11)

where I is the d×d identity matrix and C̄ is the same as in Theorem 2.1. Then
for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rn

+), the solution x(t)
of the SDPS (1.3) has the properties that

lim sup
t→∞

E|x(t)| ≤ (γ|C|+ |C̄b|)2

2γλmin1≤i≤n ci
(2.12)

and

lim sup
t→∞

1
t

∫ t

0

E|x(s)|2ds ≤ |C̄b|2

λ2
, (2.13)

where C = (c1, · · · , cn) and

γ =
1
τ

log
(λ+ 2θ

2θ

)
> 0.

That is, equation (1.3) is not noly ultimately bounded in mean but also the
average in time of the second moment is bounded.

Proof. By Theorem 2.1, the solution x(t) will remain in Rn
+ for all t ≥ −τ with

probability 1. Define

V (x) = Cx =
n∑

i=1

cixi for x ∈ Rn
+.
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By the Itô formula, we have

dV (x(t)) = xT (t)C̄
[
(b+Ax(t) +Bx(t− τ))dt+ βdw(t)

]
. (2.14)

Compute

xT (t)C̄(Ax(t) +Gx(t− τ))

=
1
2
xT (t)(C̄A+AT C̄)x(t) + xT (t)C̄Gx(t− τ)

=
1
2
xT (t)(C̄A+AT C̄)x(t) +

1
4θ
xT (t)C̄GGT C̄x(t) + θ|x(t− τ)|2

≤ −(λ+ θ)|x(t)|2 + θ|x(t− τ)|2.

It follows therefore from (2.14) that

dV (x(t)) ≤
(
|C̄b||x(t)|−(λ+θ)|x(t)|2 +θ|x(t−τ)|2

)
dt+xT (t)C̄βdB(t). (2.15)

By the Itô formula once again, we have

d[eγtV (x(t))] = eγt[γV (x(t))dt+ dV (x(t))]

≤ eγt
[
(γ|C|+ |C̄b|)|x(t)| − (λ+ θ)|x(t)|2 + θ|x(t− τ)|2

]
dt

+ eγtxT (t)C̄βdB(t).

This implies

eγtEV (x(t)) ≤ V (x(0))

+ E

∫ t

0

eγs
[
(γ|C|+ |C̄b|)|x(s)| − (λ+ θ)|x(s)|2 + θ|x(s− τ)|2

]
ds. (2.16)

But∫ t

0

eγs|x(s− τ)|2ds = eγτ

∫ t

0

eγ(s−τ)|x(s− τ)|2ds = eγτ

∫ t−τ

−τ

eγ(s)|x(s)|2ds

≤ eγτ

∫ 0

−τ

|x(s)|2ds+ eγτ

∫ t

0

eγ(s)|x(s)|2ds.

Substituting this into (2.16) and noting from the definition of γ that

λ+ θ − θeγτ = λ+ θ − λ+ 2θ
2

=
λ

2
,

we obtain that

eγtEV (x(t)) ≤ H + E

∫ t

0

eγs
[
(γ|C|+ |C̄b|)|x(s)| − λ

2
|x(s)|2

]
ds, (2.17)

Owner
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where

H = V (x(0)) + θeγτ

∫ 0

−τ

|x(s)|2ds.

Noting that

(γ|c|+ |C̄b|)|x(s)| − λ

2
|x(s)|2 ≤ (γ|C|+ |C̄b|)2

2λ
,

we therefore have

eγtEV (x(t)) ≤ H +
(γ|C|+ |C̄b|)2

2λ

∫ t

0

eγsds

= H +
(γ|C|+ |C̄b|)2

2γλ
[
eγt − 1

]
.

This yields

lim sup
t→∞

EV (x(t)) ≤ (γ|C|+ |C̄b|)2

2γλ
.

However

|x(t)| ≤
n∑

i=1

xi(t) ≤
V (x(t))

min1≤i≤n ci
.

Hence

lim sup
t→∞

E|x(t)| ≤ (γ|C|+ |C̄b|)2

2γλmin1≤i≤n ci
,

which is the required assertion (2.12). To show the other assertion (2.13) we
derive from (2.15) that

0 ≤ EV (x(t)) ≤ V (x(0)) + E

∫ t

0

(
|C̄b||x(s)| − (λ+ θ)|x(s)|2 + θ|x(s− τ)|2

)
ds.

But ∫ t

0

|x(s− τ)|2ds ≤
∫ 0

−τ

|x(s)|2ds+
∫ t

0

|x(s)|2ds.

Hence

0 ≤ H1 + E

∫ t

0

(
|C̄b||x(s)| − λ|x(s)|2

)
ds.

where H1 = V (x(0)) + θ
∫ 0

−τ
|x(s)|2ds. This implies

λ

2

∫ t

0

E|x(s)|2ds ≤ H1 + E

∫ t

0

(
|C̄b||x(s)| − λ

2
|x(s)|2

)
ds.

Noting

|C̄b||x(s)| − λ

2
|x(s)|2 ≤ |C̄b|2

2λ
,
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we obtain
λ

2

∫ t

0

E|x(s)|2ds ≤ H1 +
|C̄b|2t

2λ
.

This implies immediately that

lim sup
t→∞

1
t

∫ t

0

E|x(s)|2ds ≤ |C̄b|2

λ2
,

which is the desired assertion (2.13).
Both theorems 2.1 and 2.3 show that under certain conditions, the original

delay equation (1.1) and the associated SDPS (1.3) behave similarly in the sense
that both have positive solutions which will not explode to infinity at a finite
time and, in fact, will be ultimately bounded in mean. In other words, we
show that under certain condition the noise will not spoil these nice properties.
However, the following theorem shows that if the noise is sufficiently large, the
solution to the associated SDPS (1.3) will become extinct with probability one,
although the solution to the original delay equation (1.1) may be persistent.

Theorem 2.4 Assume that there are positive numbers c1, · · · , cd such that

λ+
max

(1
2
(C̄A+AT C̄)

)
≤ −|C|

ĉ
‖C̄B‖, (2.18)

where C̄ = diag(c1, · · · , cd) and C = (c1, · · · , cd) as before while ĉ = min1≤i≤n ci.
Assume moreover that the noise intensities βi are sufficiently large in the sense
that

βiβj > bi + bj , 1 ≤ i, j ≤ d. (2.19)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd
+), the

solution x(t) of equation (1.3) has the property that

lim sup
t→∞

1
t

log(|x(t)|) ≤ −ϕ
2

a.s. (2.20)

where
ϕ = min

1≤i,j≤d
(βiβj − bi − bj) > 0.

That is, the population will become extinct exponentially with probability one.

Proof. Clearly, Theorem 2.1 guarantees that the solution x(t) will remain in
Rd

+ for all t ≥ −τ with probability 1. Define

V (x) = Cx =
d∑

i=1

cixi for x ∈ Rd
+.
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By the Itô formula, we have

d[log(V (x(t)))] =
1

V (x(t))
xT (t)C̄

[
(b+Ax(t) +Bx(t− τ))dt+ βdB(t)

]
− 1

2V 2(x(t))
|xT (t)C̄β|2dt. (2.21)

Using the elementary inequalities

ĉ|x| ≤ V (x) ≤ |C||x| ∀x ∈ Rd
+,

and setting µ = ‖C̄B‖
ĉ , we compute

1
V (x(t))

xT (t)C̄Ax(t) ≤ λ+
max

(1
2
(C̄A+AT C̄)

) |x(t)|2

V (x(t))

≤ λ+
max

(1
2
(C̄A+AT C̄)

) |x(t)|
|C|

≤ −µ|x(t)|,

where condition (2.18) is used in the last step. Compute also

1
V (x(t))

xT (t)C̄Bx(t− τ) ≤ |x(t)|
V (x(t))

‖C̄B‖ |x(t− τ)|

≤ ‖C̄B‖
ĉ

|x(t− τ)| = µ|x(t− τ)|.

Moreover

1
V (x(t))

xT (t)C̄b− 1
2V 2(x(t))

|xT (t)C̄β|2

=
1

2V 2(x(t))

[
2xT (t)C̄bCx(t)− xT (t)C̄ββT C̄x(t)

]
=

1
2V 2(x(t))

[
2xT (t)C̄b~1C̄x(t)− xT (t)C̄ββT C̄x(t)

]
=

1
2V 2(x(t))

[
xT (t)C̄(b~1 +~1T b)C̄x(t)− xT (t)C̄ββT C̄x(t)

]
=− 1

2V 2(x(t))
xT (t)C̄QC̄x(t),

where ~1 = (1, · · · , 1) and Q = ββT − (b~1 +~1T b). Putting these into (2.21) gives

d[log(V (x(t)))] ≤
[
− xT (t)C̄QC̄x(t)

2V 2(x(t))
− µ|x(t)|+ µ|x(t− τ)|

]
dt

+
xT (t)C̄β
V (x(t))

dB(t). (2.22)
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Note that the ij-th element of the matrix Q is

βiβj − bi − bj

which is positive by condition (2.19). It is therefore easy to verify

xT (t)C̄QC̄x(t) ≥ ϕV 2(x(t))

since x(t) ∈ Rd
+, where ϕ has been defined in the statement of the theorem.

Substituting this into (2.22) yields

d[log(V (x(t)))] ≤
[
− ϕ

2
− µ|x(t)|+ µ|x(t− τ)|

]
dt+

xT (t)C̄β
V (x(t))

dB(t).

This implies

log(V (x(t))) ≤ log(V (x(0)))− ϕt

2
+

∫ t

0

[−µ|x(s)|+ µ|x(s− τ)|]ds+M(t)

≤ log(V (x(0))) + µ

∫ 0

−τ

|x(s)|ds− ϕt

2
+M(t), (2.23)

where M(t) is a martingale defined by

M(t) =
∫ t

0

xT (s)C̄β
V (x(s))

dB(s).

The quadratic variation of this martingale is

〈M,M〉t =
∫ t

0

|xT (s)C̄β|2

V 2(x(s))
ds ≤ |C̄β|2t

ĉ2
.

Hence

lim sup
t→∞

〈M,M〉t
t

≤ |C̄β|2

ĉ2
a.s.

By Theorem 1.3.4, we therefore have

lim
t→∞

M(t)
t

= 0 a.s.

It finally follows from (2.23) by dividing t on the both sides and then letting
t→∞ that

lim sup
t→∞

1
t

log(V (x(t))) ≤ −ϕ
2

a.s.

which is the required assertion (2.20).
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This theorem reveals the important fact that the environmental noise may
make the population extinct. For example, consider the scalar delay equation

dx(t)
dt

= x(t)[µ+ αx(t) + δx(t− τ)].

It is well known that if µ > 0, α < 0 and 0 < δ < |α|, then its solution x(t) is
persistent, namely

lim inf
t→∞

x(t) > 0.

However, consider its associated SDPS

dx(t) = x(t)
(
[µ+ αx(t) + δx(t− τ)]dt+ σdB(t)

)
,

where σ > 0. It is easy to see from Theorem 2.4 that if σ2 > 2µ, then the
solution to this SDPS will become extinct with probability one.

11.3 NOISE DEPENDENT ON POPULATION SIZES: PART I

Let us now begin to discuss the SDPS (1.5), where the environmental noise
is dependent on the population sizes. In the previous section we have seen how
type (1.2) of noise affects the delay equation (1.1). We shall now discuss the
effect of the noise type (1.4).

We know that to avoid the explosion problem for the delay Lotka-Volterra
model (1.1), some conditions have to be imposed on the system matrices A and
G and the research in this direction is still going on. On the other hand, Mao,
Marion and Renshaw (2002) revealed an important fact that the environmental
noise can suppress a potential population explosion. We therefore wonder if the
explosion problem for the delay equation (1.1) can be avoided by taking the
environmental noise into account instead of imposing conditions on the matrices
A and G. The following theorem gives a very positive answer.

Theorem 3.1 Assume that

σii > 0 if 1 ≤ i ≤ d whilst σij ≥ 0 if i 6= j. (3.1)

Then for any system parameters b ∈ Rd and A,G ∈ Rd×d, and any given initial
data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+), there is a unique solution x(t) to
equation (1.5) on t ≥ −τ and the solution will remain in Rd

+ with probability 1,
namely x(t) ∈ Rd

+ for all t ≥ −τ almost surely.

Proof. For any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd
+), there is

a unique maximal local solution x(t) on t ∈ [−τ, τe). Let k0, τk and τ∞ be the
same as defined in the proof of Theorem 2.1. We need to show τ∞ = ∞ a.s. Let
us define a C2-function V : Rd

+ → R+ by

V (x) =
d∑

i=1

[√
xi − 1− 0.5 log(xi)

]
.
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Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , we can apply the Itô
formula to

∫ t

t−τ
|x(s)|2ds+ V (x(t)) to obtain that

d

[∫ t

t−τ

|x(s)|2ds+ V (x(t))
]

=F (x(t), x(t− τ))dt+
d∑

i=1

d∑
j=1

0.5[x0.5
i (t)− 1]σijxj(t)dB(t), (3.2)

where

F (x(t), x(t− τ)) =|x(t)|2 − |x(t− τ)|2

+
d∑

i=1

0.5[x0.5
i (t)− 1]

(
bi +

d∑
j=1

aijxj(t) +
d∑

j=1

gijxj(t− τ)
)

+
d∑

i=1

[0.25− 0.125x0.5
i (t)]

[ d∑
j=1

σijxj(t)
]2

.

Noting

d∑
i=1

0.5[x0.5
i (t)− 1]

d∑
j=1

gijxj(t− τ) ≤ d

16

d∑
i=1

d∑
j=1

g2
ij [x

0.5
i (t)− 1]2 + |x(t− τ)|2,

d∑
i=1

[ d∑
j=1

σijxj(t)
]2

≤
d∑

i=1

[ d∑
j=1

σ2
ij

d∑
j=1

x2
j (t)

]
= |σ|2|x(t)|2,

and, by hypothesis (3.1),

d∑
i=1

x0.5
i (t)

[ d∑
j=1

σijxj(t)
]2

≥
d∑

i=1

σ2
iix

2.5
i (t),

we obtain that
F (x(t), x(t− τ)) ≤ U(x(t)),

where

U(x) = (1 + 0.25|σ|2)|x|2 +
d∑

i=1

0.5[x0.5
i − 1]

(
bi +

d∑
j=1

aijxj

)

+
d

16

d∑
i=1

d∑
j=1

a2
ij [x

0.5
i − 1]2 − 1

8

d∑
i=1

σ2
iix

2.5
i .

It is straightforward to see that U(x) is bounded, say by K, in Rd
+. We therefore

obtain from (3.2) that

d

[∫ t

t−τ

|x(s)|2ds+ V (x(t))
]
≤ Kdt+

d∑
i=1

d∑
j=1

0.5[x0.5
i (t)− 1]σijxj(t)dB(t).
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Integrating both sides from 0 to τk ∧ T , and then taking expectations, yields

E

[∫ τk∧T

τk∧T−τ

|x(s)|2ds+ V (x(τk ∧ T ))

]
≤

∫ 0

−τ

|x(s)|2ds+V (x(0))+KE(τk ∧T ).

Consequently

EV (x(τk ∧ T )) ≤
∫ 0

−τ

|x(s)|2ds+ V (x(0)) +KT. (3.3)

Note that for every ω ∈ {τk ≤ T},

V (x(τk, ω)) ≥
[√

k − 1− 0.5 log(k)
]
∧

[
0.5 log(k)− 1 +

√
1/k

]
.

It then follows from (3.3) that∫ 0

−τ

|x(s)|2ds+ V (x(0)) +KT ≥ E
[
I{τk≤T}(ω)V (x(τk, ω))

]
≥ P{τk ≤ T}

([√
k − 1− 0.5 log(k)

]
∧

[
0.5 log(k)− 1 +

√
1/k

])
.

Letting k →∞ gives limk→∞ P{τk ≤ T} = 0, and hence P{τ∞ ≤ T} = 0. Since
T > 0 is arbitrary, we must have P{τ∞ < ∞} = 0, so P{τ∞ = ∞} = 1 as
required. The proof is therefore complete.

This theorem shows that the presence of even a tiny amount of noise can
suppress a potential population explosion. To see this important feature more
clearly, let us consider the scalar delay equation

dx(t)
dt

= x(t)[µ+ αx(t) + δx(t− τ)]. (3.4)

It is known that if µ, α and δ are all positive, then its solution will explode to
infinity at a finite time. However, consider its associated SDPS

dx(t) = x(t)
(
[µ+ αx(t) + δx(t− τ)]dt+ σx(t)dB(t)

)
, (3.5)

where σ > 0. It is easy to see from Theorem 3.1 that the solution to this SDPS
will never explode to infinity at any finite time.

As mentioned before, the non-explosion property in a population dynamical
system is often not good enough but the property of ultimate boundedness is
more desired. Theorem 3.1 has only showed that the noise can suppress an
explosion at a finite time but we still do not know whether the population may
grow to infinity in long term. The following theorem shows that the noise can
prevent this situation as well.
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Theorem 3.2 Let (3.1) hold and θ ∈ (0, 1). Then there is a positive constant
K = K(θ), which is independent of the initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];Rd

+), such that the solution x(t) of equation (1.5) has the property
that

lim sup
t→∞

E|x(t)|θ ≤ K. (3.6)

Proof. Define

V (x) =
n∑

i=1

xθ
i for x ∈ Rd

+.

By the Itô formula, we have

dV (x(t)) = LV (x(t), x(t− τ))dt+
( d∑

i=1

θxθ
i (t)

d∑
j=1

σijxj(t)
)
dB(t), (3.7)

where LV : Rd
+ ×Rd

+ → R is defined by

LV (x, y) =
d∑

i=1

θxθ
i

[
bi +

d∑
j=1

aijyj

]
− θ(1− θ)

2

d∑
i=1

xθ
i

[ d∑
j=1

σijxj

]2

.

Compute

LV (x, y) ≤
d∑

i=1

θbix
θ
i +

d∑
i=1

d∑
j=1

[d
4
θ2a2

ijx
2θ
i +

1
d
y2

j

]
− θ(1− θ)

2

d∑
i=1

σ2
iix

2+θ
i

=
d∑

i=1

θbix
θ
i +

d

4
θ2

d∑
i=1

d∑
j=1

a2
ijx

2θ
i − θ(1− θ)

2

d∑
i=1

σ2
iix

2+θ
i + |y|2

= F (x)− V (x)− eτ |x|2 + |y|2, (3.8)

where

F (x) = eτ |x|2 +
d∑

i=1

(1 + θbi)xθ
i +

d

4
θ2

d∑
i=1

d∑
j=1

a2
ijx

2θ
i − θ(1− θ)

2

d∑
i=1

σ2
iix

2+θ
i .

Note that F (x) is bounded in Rd
+, namely

K1 := sup
x∈Rd

+

F (x) <∞.

We therefore have

LV (x, y) ≤ K1 − V (x)− eτ |x|2 + |y|2.
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Substituting this into (3.7) gives

dV (x(t)) =
[
K1 − V (x(t))− eτ |x(t)|2 + |x(t− τ)|2

]
dt

+
( d∑

i=1

θxθ
i (t)

d∑
j=1

σijxj(t)
)
dB(t).

Once again by the Itô formula we have

d
[
etV (x(t))

]
= et

[
V (x(t))dt+ dV (x(t))

]
≤ et

[
K1 − eτ |x(t)|2 + |x(t− τ)|2

]
dt+ et

( d∑
i=1

θxθ
i (t)

d∑
j=1

σijxj(t)
)
dB(t).

We hence derive that

etEV (x(t)) ≤ V (x(0)) +K1e
t − E

∫ t

0

es+τ |x(s)|2ds+ E

∫ t

0

es|x(s− τ)|2ds

= V (x(0)) +K1e
t − E

∫ t

0

es+τ |x(s)|2ds+ E

∫ t−τ

−τ

es+τ |x(s)|2ds

≤ V (x(0)) +K1e
t +

∫ 0

−τ

|x(s)|2ds.

This implies immediately that

lim sup
t→∞

EV (x(t)) ≤ K1.

On the other hand, we have

|x|2 ≤ d max
1≤i≤d

x2
i

so
|x|θ ≤ dθ/2 max

1≤i≤d
xθ

i ≤ dθ/2V (x).

We therefore finally have

lim sup
t→∞

E|x(t)|θ ≤ dθ/2K1

and the assertion (3.6) follows by setting K = dθ/2K1. The proof is complete.
It is easy to show by Theorem 3.2 that for any ε ∈ (0, 1), there is a positive

constant H = H(ε) such that for any initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];Rd

+), the solution x(t) of equation (1.5) has the property that

lim sup
t→∞

P{|x(t)| ≤ H} ≥ 1− ε. (3.9)
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In this case, equation (1.5) is said to be ultimately bounded in probability or
stochastically ultimately bounded. But we still do not know whether, under
condition (3.1), the solution will be ultimately bounded in mean. However, the
following result shows that the average in time of the second moment of the
solution will be bounded.

Theorem 3.3 Under condition (3.1), there is a positive constant K, which is
independent of the initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+), such that
the solution x(t) of equation (1.5) has the property that

lim sup
T→∞

1
T

∫ T

0

E|x(t)|2dt ≤ K. (3.10)

Proof. We use the same notations as in the proof of Theorem 3.1. Write

U(x) = U1(x)− |x|2

with

U1(x) = (2 + 0.25|σ|2)|x|2 +
d∑

i=1

0.5[x0.5
i − 1]

(
bi +

d∑
j=1

aijxj

)

+
d

16

d∑
i=1

d∑
j=1

a2
ij [x

0.5
i − 1]2 − 1

8

d∑
i=1

σ2
iix

2.5
i .

Clearly, U1 is bounded in Rd
+, namely

K = max
x∈Rd

+

U1(x) <∞.

So
F (x(t), x(t− T )) ≤ K − |x(t)|2.

Using this estimation, integrating both sides of (3.2) from 0 to τk ∧ T , and then
taking expectations, we obtain that

0 ≤
∫ 0

−τ

|x(s)|2ds+ V (x(0)) +KE(τk ∧ T )− E

∫ τk∧T

0

|x(t)|2dt.

Letting k →∞ yields

E

∫ T

0

|x(t)|2dt ≤
∫ 0

−τ

|x(s)|2ds+ V (x(0)) +KT.

Dividing both sides by T and then letting T →∞ we get

lim sup
T→∞

1
T

∫ T

0

E|x(t)|2dt ≤ K
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as required.

11.4 NOISE DEPENDENT ON POPULATION SIZES: PART II

We have showed in the previous sections that the noise types (1.2) and (1.4)
have very much different effects on the delay equation (1.1). Will the noise type
(1.6) have a further different effect? To answer this question, let us now study
the SDPS (1.7).

Let us first establish some conditions under which the solution of equation
(1.7) is not only positive but will also not explode to infinity at any finite time.

Theorem 4.1 Assume that there are positive numbers c1, · · · , cd and θ such that

λmax

(1
2
[C̄A+AT C̄ + σT C̄X̄σ] +

1
4θ
C̄GGT C̄ + θI

)
≤ 0, (4.1)

where C̄ = diag(c1, · · · , cd), X̄ = diag(x̄1, · · · , x̄d), and I is the d × d identity
matrix. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+),
there is a unique solution x(t) to equation (1.7) on t ≥ −τ and the solution
will remain in Rd

+ with probability 1, namely x(t) ∈ Rd
+ for all t ≥ −τ almost

surely.

Proof. Since the coefficients of the SDDE (1.7) are locally Lipschitz continuous,
by Theorem 5.2.8, we observe that for any given initial data {x(t) : −τ ≤ t ≤
0} ∈ C([−τ, 0];Rd

+) there is a unique maximal local solution x(t) on t ∈ [−τ, τe),
where τe is the explosion time. Let k0, τk and τ∞ be the same as defined in the
proof of Theorem 2.1. We need to show τ∞ = ∞ a.s. For this purpose, let us
define a C2-function V : Rd

+ → R+ by

V (x) =
n∑

i=1

cix̄i

[xi

x̄i
− 1− log

(xi

x̄i

)]
. (4.2)

Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧T , it is not difficult to show
by the Itô formula that

dV (x(t)) = LV (x(t), x(t− τ))dt+ (x(t)− x̄)T C̄σ(x(t)− x̄)dB(t), (4.3)

where LV : Rd
+ ×Rd

+ → R is defined by

LV (x, y) =
1
2
(x− x̄)T [C̄A+AT C̄ + σT C̄X̄σ](x− x̄)

+ (x− x̄)T C̄G(y − x̄). (4.4)

Noting that

(x− x̄)T C̄G(y − x̄) ≤ 1
4θ

(x− x̄)T C̄GGT C̄(x− x̄) + θ|y − x̄|2
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since θ > 0, we have

LV (x, y) ≤ (x− x̄)T
[1
2
(C̄A+AT C̄ + σT C̄X̄σ) +

1
4θ
C̄GGT C̄ + θI

]
(x− x̄)

− θ|x− x̄|2 + θ|y − x̄|2 (4.5)
≤ −θ|x− x̄|2 + θ|y − x̄|2,

where condition (4.1) has been used. Substituting this into (4.3) yields

dV (x(t)) ≤
[
− θ|x(t)− x̄|2 + θ|x(t− τ)− x̄|2

]
dt

+ (x(t)− x̄)T C̄σ(x(t)− x̄)dB(t). (4.6)

We can now integrate both sides of (4.6) from 0 to τk ∧ T and then take the
expectations to get

EV (x(τk∧T )) ≤ V (x(0))+E

∫ τk∧T

0

[
−θ|x(t)− x̄|2 +θ|x(t−τ)− x̄|2

]
dt. (4.7)

Compute

E

∫ τk∧T

0

|x(t− τ)− x̄|2dt = E

∫ τk∧T−τ

−τ

|x(t)− x̄|2dt

≤
∫ 0

−τ

|x(t)− x̄|2dt+ E

∫ τk∧T

0

|x(t)− x̄|2dt.

Substituting this into (4.7) gives

EV (x(τk ∧ T )) ≤ K := V (x(0)) + θ

∫ 0

−τ

|x(t)− x̄|2dt. (4.8)

Note that for every ω ∈ {τk ≤ T}, there is some i such that xi(τk, ω) equals
either k or 1/k, and hence V (x(τk, ω)) is no less than either

min
1≤i≤d

{
cix̄i

[ k
x̄i
− 1− log

( k
x̄i

)]}
or

min
1≤i≤d

{
cix̄i

[ 1
kx̄i

− 1− log
( 1
kx̄i

)]}
.

That is,

V (x(τk, ω)) ≥ min
1≤i≤d

{
cix̄i

([ k
x̄i
− 1− log

( k
x̄i

)]
∧

[ 1
kx̄i

− 1 + log(kx̄i)
])}

.

It then follows from (4.8) that

K ≥ E
[
I{τk≤T}(ω)V (x(τk, ω))

]



398 Stochastic Delay Population Systems [Ch.11

≥ P{τk ≤ T} min
1≤i≤n

{
cix̄i

([ k
x̄i
− 1− log

( k
x̄i

)]
∧

[ 1
kx̄i

− 1 + log(kx̄i)
])}

.

Letting k →∞ gives
lim

k→∞
P{τk ≤ T} = 0

and hence
P{τ∞ ≤ T} = 0.

Since T > 0 is arbitrary, we must have

P{τ∞ <∞} = 0,

so P{τ∞ = ∞} = 1 as required. The proof is complete.
It is interesting to observe that condition (4.1) implies

λmax

(1
2
[C̄A+AT C̄] +

1
4θ
C̄GGT C̄ + θI

)
≤ 0,

while this condition guarantees that the delay Lotka-Volterra equation (1.1)
will have a global positive solution. Hence, Theorem 4.1 tells us that under
this condition, if the noise intensity matrix σ is sufficiently small for (4.1) to
hold, then the stochastically perturbed system (1.7) will remain to have a global
positive solution. In other words, Theorem 4.1 gives a result on the robustness
of the global positive solution.

We also observe from the proof above that condition (4.1) is used to derive
(4.5) from (4.4). But there are several different ways to estimate (4.4) which
will lead to different alternative conditions for the global positive solution. For
example, we know that

(x− x̄)T C̄G(y − x̄) ≤ 1
2θ

(x− x̄)T C̄(x− x̄) +
θ

2
(y − x̄)TBT C̄G(y − x̄)

holds for any θ > 0. So

LV (x, y) ≤ 1
2
(x− x̄)T

[
C̄A+AT C̄ + σT C̄X̄σ + θ−1C̄ + θGT C̄G

]
(x− x̄)

− θ

2
(x− x̄)TBT C̄B(x− x̄) +

θ

2
(y − x̄)TBT C̄B(y − x̄). (4.9)

If we assume that

λmax

(
C̄A+AT C̄ + σT C̄X̄σ + θ−1C̄ + θGT C̄G

)
≤ 0,

we will then have

LV (x, y) ≤ −θ
2
(x− x̄)TBT C̄B(x− x̄) +

θ

2
(y − x̄)TBT C̄B(y − x̄). (4.10)
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From this 4.1 that the solution of equation (1.7) is positive and global. In other
words, the arguments above give us an alternative result which we describe as a
theorem below.

Theorem 4.2 Assume that there are positive numbers c1, · · · , cd and θ such that

λmax

(
C̄A+AT C̄ + σT C̄X̄σ + θ−1C̄ + θGT C̄G

)
≤ 0, (4.11)

where C̄ and X̄ are the same as defined in Theorem 4.1. Then the conclusion
of Theorem 4.1 still holds.

We leave the other alternatives to the reader. We observe that both con-
ditions (4.1) and (4.11) involve all the three matrices A, G and σ which appear
in equation (1.7). Both theorems tell us that if equation (1.1) (without noise)
has a global positive solution, then its stochastically perturbed system (1.7) will
also have a global positive solution as long as the noise is sufficiently small. The
question is: if the noise is not sufficiently small what would happen? In general,
one may think that the SDPS (1.7) may no longer have a global positive solu-
tion. However, we shall now establish a surprising result on the global positive
solution, where a very simple condition will be imposed on the noise intensity
matrix σ but no condition on either matrix A or G at all.

Theorem 4.3 Assume that the noise intensity matrix σ = (σij)d×d has the
property that

σii > 0 for 1 ≤ i ≤ d while σij ≥ 0 for i 6= j, 1 ≤ i, j ≤ d. (4.12)

Then the conclusion of Theorem 4.1 still holds.

Before the proof of this theorem, let us comment on its significant features.
First of all, this theorem shows that if equation (1.1) (without noise) has a
global positive solution, then a large noise may not change this property. Next,
this theorem shows that although equation (1.1) may not have a global positive
solution (e.g. its solution may explode to infinity at a finite time), the corre-
sponding SDPS (1.7) will have a global positive solution. For example, consider
the one-dimensional differential delay equation

dx(t)
dt

= x(t)[2(x(t)− 1)− (x(t− τ)− 1)].

If the initial function x(t) is increasing on [−τ, 0] and x(−τ) > 1, it is then not
difficult to show that the corresponding solution will explode to infinity at a
finite time. However, by Theorem 4.3, the SDPS

dx(t) = x(t)
(
[2(x(t)− 1)− (x(t− τ)− 1)]dt+ σ(x(t)− 1)dB(t)

)
,

where σ > 0, will have a unique global positive solution for any initial data in
C([−τ, 0]; (0,∞)). In other words, this theorem reveals an important fact that
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the noise can suppress a potential population explosion in a delay population
system.

Proof of Theorem 4.3. We use the same notation as in the proof of Theorem
4.1 except the C2-function V : Rd

+ → R+ is now defined by

V (x) =
n∑

i=1

[√
xi − 1− 0.5 log(xi)

]
. (4.13)

Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , we can show by the Itô
formula that

dV (x(t)) = LV (x(t), x(t− τ))dt+ 0.5ψ(x(t))σ(x(t)− x̄)dB(t), (4.14)

where ψ(x) = (
√
x1 − 1, · · · ,√xd − 1) and LV : Rd

+ ×Rd
+ → R is defined by

LV (x, y) = 0.5ψ(x)[A(x− x̄) +B(y − x̄)] + 0.5|σ(x− x̄)|2

− 0.125
d∑

i=1

√
xi

( d∑
j=1

σij(xj − x̄j)
)2

. (4.15)

Noting that |ψ(x)| ≤
√
d(|x|+ 1), we compute

0.5ψ(x)[A(x− x̄) +G(y − x̄)] + 0.5|σ(x− x̄)|2

≤0.5
√
d(|x|+ 1) [‖A‖(|x|+ |x̄|) + ‖G‖(|y|+ |x̄|)] + 0.5‖σ‖2|x− x̄|2

≤0.5
√
d(|x|+ 1) [‖A‖(|x|+ |x̄|) + ‖G‖|x̄|]

+0.25‖G‖[d(|x|+ 1) + |y|2] + ‖σ‖2(|x|2 + |x̄|2). (4.16)

Moreover,
d∑

i=1

√
xi

( d∑
j=1

σij(xj − x̄j)
)2

=
d∑

i=1

√
xi

{( d∑
j=1

σijxj

)2

+
( d∑

j=1

σij x̄j

)( d∑
j=1

σij x̄j − 2
d∑

j=1

σijxj

)}

≥
d∑

i=1

σiix
2.5
i +

d∑
i=1

√
xi

( d∑
j=1

σij x̄j

)( d∑
j=1

σij x̄j − 2
d∑

j=1

σijxj

)
. (4.17)

Substituting (4.16) and (4.17) into (4.15) yields

LV (x, y) ≤ κ(x)− 0.25‖B‖(|x|2 − |y|2), (4.18)

where

κ(x) = 0.5
√
d(|x|+ 1) [‖A‖(|x|+ |x̄|) + ‖B‖|x̄|]

+ 0.25‖B‖[d(|x|+ 1) + |x|2] + ‖σ‖2(|x|2 + |x̄|2)

− 0.125
d∑

i=1

σiix
2.5
i − 0.125

d∑
i=1

√
xi

( d∑
j=1

σij x̄j

)( d∑
j=1

σij x̄j − 2
d∑

j=1

σijxj

)
.
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It is easy to see that κ(x) is bounded above, say by K1, in Rd
+. Thus

LV (x, y) ≤ K1 − 0.25‖B‖(|x|2 − |y|2).

Inserting this into (4.14) gives

dV (x(t)) ≤ [K1 − 0.25‖B‖(|x(t)|2 − |x(t− τ)|2)]dt
+ 0.5ψ(x(t))σ(x(t)− x̄)dB(t). (4.19)

We can now integrate both sides of this inequality from 0 to τk ∧ T and then
take the expectations to get

EV (x(τk ∧ T )) ≤ V (x(0)) +K1T − 0.25‖B‖E
∫ τk∧T

0

[
|x(t)|2 − |x(t− τ)|2

]
dt.

Noting that

E

∫ τk∧T

0

|x(t− τ)|2dt ≤
∫ 0

−τ

|x(t)|2dt+ E

∫ τk∧T

0

|x(t)|2dt,

we obtain

EV (x(τk ∧ T )) ≤ V (x(0)) +K1T + 0.25‖B‖
∫ 0

−τ

|x(t)|2dt. (4.20)

The remaining of the proof is very similar to those in the proof of Theorem 4.1
and hence the proof is complete.

From now on we shall denote by x(t; ξ) the unique global positive solution
of the SDPS (1.7) given initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+).
One of the important properties in population dynamics is the persistence which
means every species will never become extinct. The most natural analogue for
the SDPS (1.7) is that every species will never become extinct with probability
1. To be precise, let us give the definition.

Definition 4.4 The SDPS (1.7) is said to be persistent with probability 1 if,
for every initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+), the solution
x(t; ξ) has the property that

lim inf
t→∞

xi(t; ξ) > 0 a.s. for all 1 ≤ i ≤ d. (4.21)

In the previous section we have shown that either condition (4.1) or (4.11)
guarantees the unique global positive solution. We shall now show that either
of them also guarantees the persistence with probability 1.

Theorem 4.5 Assume that there are positive numbers c1, · · · , cd and θ such that
either (4.1) or (4.11) holds. Then equation (1.7) is persistent with probability



402 Stochastic Delay Population Systems [Ch.11

1. Moreover, for any initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd
+), the

solution x(t; ξ) has the property that

lim sup
t→∞

xi(t; ξ) <∞ a.s. for all 1 ≤ i ≤ d. (4.22)

Proof. We only prove the theorem under condition (4.1) since it can be done in
the same way under condition (4.11). Fix any initial data ξ and write x(t; ξ) =
x(t) for simplicity. Using the same notation as in the proof of Theorem 4.1 we
derive from (4.5) that

V (x(t)) ≤ V (ξ(0)) +
∫ t

0

[
− θ|x(s)− x̄|2 + θ|x(s− τ)− x̄|2

]
ds+M(t),

where

M(t) =
∫ t

0

(x(s)− x̄)T C̄σ(x(s)− x̄)dB(s)

is a continuous local martingale with M(0) = 0. It is easy to show that∫ t

0

|x(s− τ)− x̄|2ds ≤
∫ 0

−τ

|ξ(s)− x̄|2ds+
∫ t

0

|x(s)− x̄|2ds.

Substituting this into the previous inequality yields

V (x(t)) ≤ ζ +M(t)

where ζ = V (ξ(0)) +
∫ 0

−τ
|ξ(s)− x̄|2ds is a positive constant. Since V (x(t)) ≥ 0,

X(t) := ζ +M(t) ≥ 0.

By Theorem 1.3.9,, limt→∞X(t) <∞ a.s. Hence

lim sup
t→∞

V (x(t)) <∞ a.s.

Recalling the definition of V (i.e. (4.2)) we obtain that

lim sup
t→∞

[
xi(t)
x̄i

− 1− log
(xi(t)
x̄i

)]
<∞ a.s.

for all 1 ≤ i ≤ d. Note that

u− 1− log(u) →∞ if and only if u ↓ 0 or u ↑ ∞.

We must therefore have

0 < lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) <∞ a.s.
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for every i = 1, · · · , d as required. The proof is complete.
Theorem 4.5 shows that, for every i, both

ui := lim inf
t→∞

xi(t) and vi := lim sup
t→∞

xi(t)

are finite and positive random variables. Hence there is a random variable
T = T (ω) > 0 such that

ui

2
≤ xi(t) ≤ vi + 1 for all t ≥ T.

On the other hand, xi(t) is continuous and positive on [−τ, T ], so

0 < min
−τ≤t≤T

xi(t) ≤ max
−τ≤t≤T

xi(t) <∞.

Thus, there is a pair of finite and positive random variables ūi and v̄i such that

P{ūi ≤ xi(t) ≤ v̄i for all t ≥ −τ} = 1. (4.23)

This implies that for any ε ∈ (0, 1), there is a pair of positive constants αi and
βi, which might depend on ξ and ε, such that

P{αi ≤ xi(t) ≤ βi for all t ≥ −τ} ≥ 1− ε.

This means that the solution of equation (1.7) will remain within a compact
subset of Rd

+ with large probability. It is certainly much more useful if both
αi and βi can be estimated more precisely. For this purpose we introduce a
continuous function

h(u) = u− 1− log(u) on u > 0.

This function has the properties that h(1) = 0; h(u) is strictly increasing to
∞ as u decreases from 1 to 0 or as u increases from 1 to ∞. Hence for any
v > 0, the equation h(u) = v has two roots: one in (0, 1) and the other in
(1,∞) that are denoted by h−1

l (v) and h−1
r (v), respectively. We also naturally

set h−1
l (0) = h−1

r (0) = 1. So both h−1
l (v) and h−1

r (v) are well-defined on v ≥ 0.
Also, h−1

l (v) is decreasing while h−1
r (v) is increasing. Moreover,

h(h−1
l (v)) = h(h−1

r (v)) = v on v ≥ 0 (4.24)

while
h−1

l (h(u)) ≤ u ≤ h−1
r (h(u)) on u > 0. (4.25)

With this notation we can describe αi and βi more precisely.

Theorem 4.6 Assume that there are positive numbers c1, · · · , cd and θ such that
either (4.1) or (4.11) holds. Then for any initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈
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C([−τ, 0];Rd
+) and any positive number ε ∈ (0, 1), the solution of equation (1.7)

has the property that

P{αi < xi(t; ξ) < βi for all t ≥ −τ, 1 ≤ i ≤ d} ≥ 1− ε (4.26)

with

αi = x̄ih
−1
l

[
ϕ(ξ)
εcix̄i

]
and βi = x̄ih

−1
r

[
ϕ(ξ)
εcix̄i

]
, (4.27)

where we set

ϕ(ξ) = sup
−τ≤s≤0

V (ξ(s)) + θ

∫ 0

−τ

|ξ(s)− x̄|2ds,

if condition (4.1) holds, while

ϕ(ξ) = sup
−τ≤s≤0

V (ξ(s)) +
θ

2

∫ 0

−τ

(ξ(s)− x̄)TGT C̄G(ξ(s)− x̄)ds,

if condition (4.11) holds, in which V is defined by (4.2).

Proof. We only prove the theorem under condition (4.1) since it can be done in
the same way under condition (4.11). Fix any initial data ξ and write x(t; ξ) =
x(t) for simplicity. By the definitions of V , h−1

l , h−1
r and their properties,

especially (3.25), we have

αi ≤ x̄ih
−1
l

[
V (ξ(s))
cix̄i

]
< x̄ih

−1
l

[
h
(ξi(s)
x̄i

)]
≤ ξi(s), −τ ≤ s ≤ 0

while

βi ≥ x̄ih
−1
r

[
V (ξ(s))
cix̄i

]
> x̄ih

−1
r

[
h
(ξi(s)
x̄i

)]
≥ ξi(s) − τ ≤ s ≤ 0

for every 1 ≤ i ≤ d. Define the stopping time

ρ = inf{t ≥ 0 : xi(t) 6∈ (αi, βi) for some i}.

Then for any t ≥ 0, it follows from (4.6) that

EV (x(ρ ∧ t)) ≤ V (ξ(0)) + E

∫ ρ∧t

0

[
− θ|x(s)− x̄|2 + θ|x(s− τ)− x̄|2

]
ds.

But

E

∫ ρ∧t

0

|x(s− τ)− x̄|2ds ≤
∫ 0

−τ

|ξ(s)− x̄|2ds+ E

∫ ρ∧t

0

|x(s)− x̄|2ds.

We hence have

ϕ(ξ) ≥ EV (x(ρ ∧ t)) ≥ E
[
I{ρ≤t}(ω)V (x(ρ;ω))

]
. (4.28)
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Note that for every ω ∈ {ρ ≤ t}, there is some i = i(ω) such that xi(ρ;ω) is
equal to either αi or βi. If xi(ρ;ω) = αi,

V (x(ρ;ω)) ≥ cix̄ih

(
αi

x̄i

)
= cix̄ih

[
h−1

l

(
ϕ(ξ)
εcix̄i

)]
=
ϕ(ξ)
ε

;

while if xi(ρ) = βi,

V (x(ρ;ω)) ≥ cix̄ih

(
βi

x̄i

)
= cix̄ih

[
h−1

r

(
ϕ(ξ)
εcix̄i

)]
=
ϕ(ξ)
ε

.

That is, we always have

V (x(ρ;ω)) ≥ ϕ(ξ))
ε

if ω ∈ {ρ ≤ t}.

Substituting this into (4.28) yields

ϕ(ξ) ≥ ϕ(ξ)
ε

P{ρ ≤ t}. (4.29)

That is,
P{ρ ≤ t} ≤ ε.

Letting t→∞ produces P{ρ <∞} ≤ ε. Hence

P{ρ = ∞} ≥ 1− ε

which means

P{αi < xi(t) < βi for all t ≥ −τ, 1 ≤ i ≤ d} ≥ 1− ε (4.30)

as required. The proof is complete.
Property (4.23) shows that almost every sample path of the solution of

the SDPS (1.7) will remain in a compact set. Let us discuss how the sample
path may vary within the compact set in more detail. In particular, we shall
investigate whether the solution will tend to the equilibrium state x̄ or not.

We will need two more new notations. If U is a closed subset of Rd and
x ∈ Rd, define

d(x;U) = min{|x− y| : y ∈ U},

i.e. the distance between vector x and set U . Denote by R̄d
+ the closure of Rd

+,
namely R̄d

+ = {x ∈ Rd : xi ≥ 0 for all 1 ≤ i ≤ d}.

Theorem 4.7 Assume that there are positive numbers c1, · · · , cd and θ such that
either (4.1) or (4.11) holds. Then for any initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];Rd

+), the solution of equation (1.7) has the property that

lim
t→∞

d(x(t; ξ),K) = 0 a.s. (4.31)
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with
K = {x ∈ R̄d

+ : (x− x̄)TH(x− x̄) = 0}, (4.32)

where we set

H =
1
2
[C̄A+AT C̄ + σT C̄X̄σ] +

1
4θ
C̄GGT C̄ + θI, (4.33)

if condition (4.1) holds, while

H = C̄A+AT C̄ + σT C̄X̄σ + θ−1C̄ + θBT C̄B (4.34)

if condition (4.11) holds.
The proof of this theorem is rather technical so we only refer the reader

to Mao (2002). From this theorem follows the following useful result on the
asymptotic stability.

Theorem 4.8 Assume that there are positive numbers c1, · · · , cd and θ such that
the symmetric matrix H defined by either (4.33) or (4.34) is negative-definite.
Then for any initial data ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];Rd

+), the solution
of equation (1.7) has the property that

lim
t→∞

x(t; ξ) = x̄ a.s. (4.35)

Proof. Since H is negative-definite, the set K defined by (4.32) reduces to
K = {x̄}. Theorem 4.7 hence shows that

lim
t→∞

d(x(t; ξ),K) = lim
t→∞

|x(t; ξ)− x̄| = 0 a.s.

which is the desired assertion (4.35).

11.5 STOCHASTIC DELAY LOTKA–VOLTERRA FOOD CHAIN

Gard (1988) considered the Lotka-Volterra system of food chain

ẋ1(t) = x1(t)[b1 − a11x1(t)− a12x2(t)],
ẋ2(t) = x2(t)[−b2 + a21x1(t)− a22x2(t)− a23x3(t)], (5.1)
ẋ3(t) = x3(t)[−b3 + a32x2(t)− a33x3(t)],

where x1, x2 and x3 represent, respectively, the population densities of prey,
intermediate predator, and top predator. In this example, the bi and bij are
positive constants. Gard (1999) showed that an equilibrium x̄ = (x̄1, x̄2, x̄3)T

exists in R3
+ if

b1 − (a11/a21)b2 − [(a11a22 + a12a21)/a21a32]b3 > 0. (5.2)
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He also showed that the equilibrium is globally asymptotically stable as long as
(5.2) is satisfied.

Let us now modify this example by taking into account the time delay of
interactions between species. In this case, the system above becomes

ẋ1(t) = x1(t)[b1 − a11x1(t)− a12x2(t− τ)],
ẋ2(t) = x2(t)[−b2 − a22x2(t) + a21x1(t− τ)− a23x3(t− τ)], (5.3)
ẋ3(t) = x3(t)[−b3 − a33x3(t) + a32x2(t− τ)].

That is, in the matrix form,

ẋ(t) = diag(x1(t), x2(t), x3(t))[b+Ax(t) +Gx(t− τ)], (5.4)

where

x(t) =

 b1
−b2
−b3

 , A =

−a11 0 0
0 −a22 0
0 0 −a33


and

G =

 0 −a12 0
a21 0 −a23

0 a32 0


Under (5.2), the delay equation (5.4) has an equilibrium x̄ = (x̄1, x̄2, x̄3)T in
R3

+, the same as equation (5.1). We may therefore re-write equation (5.4) as

ẋ(t) = diag(x1(t), x2(t), x3(t))[A(x(t)− x̄) +G(x(t− τ)− x̄)]. (5.5)

Taking the environmental noise into account, we may replace the rate bi by an
average value plus a random fluctuation term, say

bi + σii(xj − x̄j)Ḃ(t), 1 ≤ i ≤ 3,

where σii’s are positive constants. As a result, we have a stochastic delay Lotka–
Volterra model of food chain

dx(t) = diag(x1(t), x2(t), x3(t))

×
(
[A(x(t)− x̄) +G(x(t− τ)− x̄)]dt+ σ(x(t)− x̄)dB(t)

)
, (5.6)

where σ = diag(σ11, σ22, σ33). For illustration, we demonstrate how Theorem
4.8 can be applied to show the globally asymptotic stability of the equilibrium
with probability one. For this purpose, we seek positive numbers c1, c2, c3 and
θ such that λmax(H) < 0, where

H =
1
2
[C̄A+AT C̄ + σT C̄X̄σ] +

1
4θ
C̄GGT C̄ + θI.
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Here, as before, C̄ = diag(c1, c2, c3). In particular, if we set

c1 =
1
a11

, c2 =
1
a22

, c3 =
1
a33

, θ =
1
2
,

we then have

λmax(H) ≤ −1
2

+
1
2
λmax(σT C̄X̄σ) +

1
2
λmax(C̄GGT C̄).

It is easy to compute that

λmax(σT C̄X̄σ) = max
{ x̄1σ

2
11

a11
,
x̄2σ

2
22

a22
,
x̄3σ

2
33

a33

}
and

λmax(C̄GGT C̄) ≤ ĉλmax(GGT ) = ĉ
[
(a2

12 + a2
32) ∨ (a2

21 + a2
23)

]
,

where
ĉ =

1
a2
11

+
1
a2
22

+
1
a2
33

.

We hence have λmax(H) < 0 if

max
{ x̄1σ

2
11

a11
,
x̄2σ

2
22

a22
,
x̄3σ

2
33

a33

}
+ ĉ

[
(a2

12 + a2
32) ∨ (a2

21 + a2
23)

]
< 1. (5.7)

By Theorem 4.8 we can therefore conclude that the equilibrium x̄ is globally
asymptotically stable with probability one if (5.7) is satisfied.

It is useful to observe that condition (5.7) implies that

ĉ
[
(a2

12 + a2
32) ∨ (a2

21 + a2
23)

]
< 1 (5.8)

and
σ2

ii ≤
aii

x̄i

(
1− ĉ

[
(a2

12 + a2
32) ∨ (a2

21 + a2
23)

])
, 1 ≤ i ≤ 3. (5.9)

Condition (5.8) guarantees that the equilibrium of the delay equation (5.3) (with-
out noise) is globally asymptotically stable while condition (5.9) gives the upper
bound for the noise so that the equilibrium of the stochastic delay equation (5.6)
will remain to be globally asymptotically stable with probability one.
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Chapter 1: The material in this chapter is classical and we refer the reader
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Liptser & Shiryayev (1986) etc.

Chapter 2: Most of the material in this chapter is classical, but Section
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(1991a, 1994a) while Section 4.5 is based on Mao (1994c) and Theorem 4.6.2 is
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estimates are classical and we refer the reader to Kolmonovskii & Nosov (1986),
Mao (1994a) and Mohammed (1984). Sections 5.5, 5.6 and 5.7 are based on Mao
(1991d, e), Mao (1996b) and Mao (1996c), respectively.

Chapter 6: Stochastic functional differential equations of neutral type have
been studied by Kolmonovskii & Nosov (1986) but some results have only been
stated without proofs. In this chapter, we systematically study the neutral-type
equations and our treatments are independent. Many results in this chapter are
new, for example, the pathwise estimates, the Lp-continuity and the Razumikhin
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Chapter 7: The martingale representation theorem is classical. Section 7.3
is based on Pardoux & Peng (1990) while Section 7.4 is based on Mao (1995a).
The generalized Feynman–Kac formula is due to Pardoux & Peng (1992).

Chapter 8: The Cameron–Martin–Girsanov theorem is classical. Sections
8.3 and 8.4 are based on Markus & Weerasinghe (1988) while Section 8.5 is based
on Mao & Markus (1991).
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9.3 not only describes the classical Black–Scholes formulas for the European call
and put options but also introduces the very popular numerical methods and
Monte Carlo simulations in option valuation based on Higham and Mao (2005).
The main results in Section 9.4 are due to Dynkin (1963, 1965) and we follow
the treatment of Oksendal (1995). Section 9.5 is based on Friedman (1975) and
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Chapter 10: The results of this chapter are essentially due to Liao & Mao
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convergence

almost sure ∼ 5
with probability one 5
stochastic ∼ 6
in probability 6
in pth moment 6
in distribution 6

convergence rate function 189
convergence theorem

bounded ∼ 6
dominated ∼ 6
monotonic ∼ 6

covariance matrix 5

decrescent function 108
delay equation 155
destabilization 135, 362
differential equation 48
diffusion operator 110
Dirac delta
function 17, 354
Dirichlet problem 78
dissipative force 288
distribution 5
Doob’s martingale

convergence theorem 13
inequality 14

Doob’s stopping theorem 11
Doob–Dynkin’s lemma 3

efficient market hypothesis 303
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energy 288
energy bound 288
equilibrium position 107, 110, 170
error function 281
Euler–Maruyama’s

approximation 76, 168
excessive 333
exercise price 315
exit time 11
expectation 4
expiry date 315
exponential instability 123, 356
exponential martingale inequality 43
exponential stability

almost sure ∼ 119, 175, 225
moment ∼ 127, 172, 221

external driving force 288
extinction 387

Feller property 86
Feynman–Kac’s formula 78, 263

generalized ∼ 268
finite variation process 10
filtration 9

natural ∼ 15
right continuous ∼ 9

flow property 48
Fourier transform 238
functional differential equation 147
fundamental matrix 92
F-measurable 3

geometric Brownian motion 105, 300
Girsanov’s theorem 274
global solution 58, 154, 209
Gronwall’s inequality 44

Has’minskii condition 58
hitting time 343
Hölder’s inequality 5

increasing process 10
indicator function 3
indefinite integral 23,30
independent increments 15
independent

random variables 7
sets 6
σ-algebras 7

indistinguishable processes 11
initial-boundary value problem 81
integrable process 11
integrable random variable 4
integration by parts formula 36
Itô’s formula 32, 35
Itô’s stochastic integral 18
Itô’s process 31, 36

Jensen’s inequality 75
joint quadratic variation 12

Kolmogorov backward equation 83

Laplace operator 38
law of the iterated logarithm 16
least superharmonic majorant 334
least supermeanvalued majorant 334
left continuous process 10
Lévy’s theorem 17
linear growth condition 51, 150, 206
linear stochastic differential eq.

autonomous ∼ 92, 100
homogeneous ∼ 92
in the narrow sense 92, 99

Liouville’s formula 92
Lipschitz condition 51, 150, 204
local Lipschitz condition 56, 153, 209
local martingale 12
logistic equation 377
Lotka–Volterra model 377
lower semicontinuous 330
Lyapunov exponent
moment ∼ 63, 127

sample ∼ 63, 119
Lyapunov function 109

stochastic ∼ 115
L1(R+;Rd)-stable 191

Markov process 84
homogeneous ∼ 85
strong ∼ 86

Markov property 84
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strong ∼ 86
martingale 11

representation theorem 236
mean reverting process 304
mean reverting theta process 313
measurable process 10
measurable space 3
Minkovskii’s inequality 5
modification 10
moment 4
monotone condition 58

negative definite function 108
neural network 351

with delay 366
neutral stochastic

functional differential eq. 203
differential delay eq. 209

optimal
expected reward 306
stopping problem 306
stopping time 306

option 315
American call ∼ 316
American put ∼ 316
Asian ∼ 316
barrier ∼ 316
digital ∼ 316
European call ∼ 315
European put ∼ 315
lookback call ∼ 316

optional process 10
Ornstein–Uhlenbeck position

process 102
Ornstein–Uhlenbeck process 101

mean reverting ∼ 103, 302

partial differential equation 78
pathwise uniqueness 78
payoff functional 319
persistent with probability one 401
Picard’s iterations 53, 205, 250
positive-definite function 108
predictable process 10
probability measure 4

probability space 4
complete ∼ 4

progressive process 10
progressively measurable 10
put-call parity 319

quadratic variation 12
quasilinear partial differential

equation 267

radially unbounded 108
Radon–Nikodym’s theorem 8
random variable 3
Razumikhin theorem 169, 221
reachability problem 235
reflection principle 281
restoring force 288
reward function 330
right continuous process 10
robustness of

instability 362
stability 358

saddle point 344
of sets 344

sample path 10
semigroup property 48
simple process 19
solution 48, 149, 203, 241
square integrable martingale 12
square root process 302

mean reverting ∼ 304
stability in probability 110
stabilization 135, 358
state space 9
stationary increments 15
step function 8
step process 18
stochastic asymptotic stability 110

in the large
stochastic differential 31, 36
stochastic game 319
stochastic instability 110
stochastic interval 11
stochastic oscillator 270

linear ∼ 278
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nonlinear ∼ 274
stochastic process 9
stochastic self-stabilization 190
stochastic stability 110
stochastic volatility 313
stopped process 11
stopping time 11
strike price 315
strong law of large numbers 12, 16
strong solution 78
submartingale 13

inequality 14
superharmonic 331

majorant 334
supermartingale 13

inequality 13
convergence theorem 13

supermeanvalued 330
majorant 334

symmetric neural network 355, 357
σ-algebra 3

generated 3

theta process 311
transformation formula 5
transition probability 84
trivial solution 107, 110, 172

ultimate boundedness 384
uncorrelated 4
uniformly integrable 13, 339
uniformly Lipschitz L2-continuous 167
unique solution 48, 149, 210, 263
upper limit of sets 7
usual conditions 9

variance 4
variational inequality 358
variation-of-constants formula 96
version 10
volatility 303

weak solution 78
weak uniqueness 78
Wronskian determinant 92


